CITY OF MISSION PLANNING COMMISSION AGENDA

March 27, 2023
7:00 PM
City Hall, 6090 Woodson

I. Call to Order
II. Roll Call
III. Approval of Minutes from the February 27, 2023, Meeting
IV. New Business

1. Public Hearing - Case\# 23-03-Consideration of a Preliminary Plat (Re-plat) for Morrison Ridge Park - Klassen Construction, Applicant.

- Staff Report
- Letter Summarizing Applicant's Request
- Preliminary Plat

2. Case \#23-04 - Consideration of an Application for a Final Development Plan for 5665 Foxridge Drive Multi-Family Development - Block Real Estate Services, Applicant.

- Staff Report
- Application
- Final Development Plan
- Traffic Report
- Storm Water Study

3. Case \#23-05 - Consideration of an Application for a Wall Mural at 6620 Martway American Honey Salon, Applicant.

- Staff Report
- Application
- Mural Depiction
- Mural Guidelines
V. Old Business
VI. Planning Commission Comments
VII. Staff Updates

Questions concerning this meeting may be addressed to staff contact,
Karie Kneller, City Planner, at (913) 676-8366 or kkneller@missionks.org.

AT A GLANCE

Applicant:
Klassen Construction

Location:

Riggs Road between 52nd and 53rd Street

Property ID:
KP425000000357; KP425000000351

Current Zoning: R-1

Proposed Zoning:
N/A

Current Land Use:
Vacant

Proposed Land Use:
Single-Family

x Public Hearing Required

Legal Notice Date:
March 4, 2023
Published in the Legal Record

Case Number:

23-03

Project Name:
Preliminary Plat of Morrison Ridge Park

Project Summary:

The applicant is requesting approval of the preliminary plat for two properties that are currently vacant. The proposed plat splits the two current lots into four lots in preparation for construction of four new single-family homes.

Staff Contact: Karie Kneller

輁 MISSION

Background and Property Information

The subject property is located at approximately Riggs Street, half a block north of 53rd Street and west of properties on the west side of Riggs Street. Each of the properties are .47 acres. The lots are zoned R-1 "Single-Family Residential" and are surrounded by R-4/RP-4 "Garden Apartment District" zoning on the west and $\mathrm{R}-1$ zoning on the east with multi-family and single-family uses.

The original 1913 plat of Morrison Ridge Park includes the lots on the north (labeled 357-362) and lots on the south (351356), and provides a 40 -foot right-of-way for a public street, "Florence Street," that was not constructed. These lots are under ownership by the applicant. The original plat does not provide for public utility easements.

There is underground private storm water infrastructure that runs between two single-family homes at 5230 Riggs Street and 5234 Riggs Street, which currently empties in a storm water inlet at the back of the properties and into a drainage ditch to the west. Additionally, sanitary sewer infrastructure is located in the public right-of-way (Florence Street) and west of the subject properties.

Project Proposal

This re-plat will consolidate lots 357-362 and lots 351-356 and split the consolidated lots north to south to create four lots. Lot 1 and Lot 2 are north of the public right-of-way, and Lot 3 and Lot 4 are south of the public right-of-way. The original 40 -foot right-of-way will remain public, but a private driveway is proposed to be constructed that will be privately maintained. Public utility rights-of-way are also proposed.

Plan Review and Analysis

Mission Comprehensive Plan

The Comprehensive Plan (2007) designates the property as "low-density residential." Single-family homes fall into this category with 3.5 to 6 dwelling units per acre.

Analysis: The plat as proposed will accommodate single-family residential construction. The applicant proposes four single-family dwellings. The proposal conforms with the Comprehensive Plan.

Municipal Code

Section 440.220 of the Mission Municipal Code provides that preliminary plats shall be approved by the Planning Commission if it determines that:

1. The proposed preliminary plat conforms to the requirements of this Title, the applicable zoning district regulations, and any other applicable provisions of this Code, subject only to acceptable rule exceptions.

According to District Regulations for R -1 zoning, lot size shall not be less than 6,000 square feet per dwelling unit. The proposed lot size is 10,065 square feet. Lot width for split lots can be a minimum of 60 feet if it complements the surrounding neighborhood character. Adjacent lots to the south on the same block and on adjacent blocks range from 60 -foot width to 150 -foot width. The proposed plat indicates a minimum 67.21 -foot width for Lots 1 and 2 , and a minimum 67.10 -foot width for Lots 3 and 4 .

It is Staff's determination that the proposed plat is in conformance with Mission's Municipal Code.
2. The subdivision or plat represents an overall development pattern consistent with the Master Plan and the Official Street Map.

It is Staff's determination that the plat represents a development pattern already established and supported by the Comprehensive Plan.
3. The plat contains a sound, well-conceived parcel and land subdivision layout consistent with good land planning and site engineering design principles.

It is Staff's determination that the plat supports good land planning and allows for future redevelopment in compliance with adopted standards.

Plan Reyiew and Analysis, cont'd.

4. The spacing and design of proposed curb cuts and intersection locations is consistent with good traffic engineering design and public safety considerations.

It is Staff's determination that the plat is consistent with good traffic engineering and safety standards.
5. All submission requirements have been satisfied.

All the requirements of 440.220-Submission of Preliminary Plats have been satisfied.

Recommendation

Staff recommends that the Planning Commission approve Case \# 23-03, the Preliminary Plat for Morrison Ridge Park, Second Plat with the following conditions:
(A) Prior to submittal of the final plat, the applicant is required to obtain a permanent drainage easement from the existing property to the east of Lot 4 in order to tie into existing storm water infrastructure.
(B) Prior to submittal of the final plat, the applicant is required to obtain a permanent drainage easement for the existing property to the west of Lot 3 in order to install rip-rap.
(C) Prior to submittal of the final plat, the applicant is required to submit a storm water management study that documents existing versus proposed storm water flow and analysis that shows that the additional storm water flow does not have an adverse impact on downstream properties.
(D) The final plat shall note that the private drive shall be maintained in perpetuity by the property owner(s) of Lots 1-4.
(E) A maintenance agreement shall be recoreded with the Johnson County Register of Deeds.

Planning Commision Action

To be considered by the Planning Commission for approval at a public hearing on March 27, 2023.

City Council.Action

None

Community Development Department 6090 Woodson Street Mission, KS 66202 913-676-8360

Development Application
Permit \# \qquad

Project Details

General Location or Address of Property: Southeast corner of 56th Street and Foxridge Drive

Present zoning of property: M-P

Present use of property: Office (call center)

Agreement to Pay Expenses

Applicant intends to file an application with the Community Development Department of the City of Mission, Kansas (City). As a result of the filing of said application, City may incur certain expenses, such as but not limited to publication costs, consulting fee, attorney fee, and court reporter fees. Applicant hereby agrees to be responsible for and to reimburse City for all cost incurred by City as a result of said application. Said costs shall be paid within ten (10) days of the receipt of any bill submitted by City to Applicant. It is understood that no requests granted by City or any of its commissions will be effective until all costs have been paid. Costs will be owed whether or not Applicant obtains the relief requested in the application.

Affidavit of Ownership and/or Authorization of Agent
I, Kenneth Block, BK Properties, LLC
certify that I am the owner or contract purchaser of the subject property. I give my permission for the undersigned to act as my agent on behalf of the application hereby being submitted.

Date $1 / 17 / 2023$

File Fee: \$
Total:
Receipt \#
Notes:

Meeting Date

PC	$C C$
Date Notices Sent	

Decision

AT A GLANCE

Applicant:
 BK Properties, LLC

Location:

5665 Foxridge Drive

Property ID:
KF251208-1021

Current Zoning:
M-P

Proposed Zoning:
N/A

Current Land Use:
Office

Proposed Land Use:
Multi-family Residential

N/A Public Hearing Required

Legal Notice Date:

N/A

Case Number:

23-04

Project Name:
5665 Foxridge Final Development Plan

Project Summary:

The applicant is requesting approval of a Final Development plan (FDP) for a multi-family development project on the property at 5665 Foxridge Drive. The Planning Commission recommended approval of the project at its July 25, 2022 meeting and the City Council approved the Preliminary Development Plan (PDP) and Non-Conforming Situation Permit at its September 21, 2022 meeting.

Staff Contact: Karie Kneller

Background and Property Information

The project is located at the southeast corner of 56 th Street and Foxridge Drive. The subject property is approximately five acres and it is zoned M-P "Industrial Park District." The property also lies in the Form Based Code District. The underlying zoning code permits multi-family developments in Industrial Districts, but the project required a Non-Conforming Situation Permit for its deviation from the Form Based Code regulations. The City Council approved the PDP and the Non-Conforming Situation Permit at its September 21, 2022 hearing.

Project Proposal

The project proposal is a five-story 307 -unit multi-family development with 466 parking spaces; 22 parking spaces are located in a surface lot on the west side fronting the "club house" lobby, and the remaining 444 parking spaces are within a central parking garage. Accessible parking spaces per ADA standards are provided; 2 are provided in the surface lot and 7 are provided in the parking garage. This project will increase the impervious surface of the existing conditions and decrease the green space by 10% overall.

The photometric plan estimates that zero foot-candles will impact the exterior off-site surrounding conditions. Exterior lighting is shielded and provides down-lighting per International Dark Sky Standards and are certified IDA Dark Sky Approved by the International Dark Sky Association.

The Landscaping Plan specifies native shade and ornamental trees that meet the number and placement as required by the municipal code. There are nine street trees provided on Foxridge Drive, 13 trees provided on 56th Street, and nine trees on Broadmoor Street, equaling the number required to meet the stipulation of one tree for each 50 feet of street frontage. There are seven trees provided in landscaped open space, two trees provided within surface parking, and six-percent of the parking areas are landscaped. Other landscaping includes evergreen and deciduous shrubs, grasses, and perennials. Annuals will be planted seasonally, and all plant beds will be irrigated.

A traffic impact study was submitted with the final development plan. The recommendations are generally the same as the report that was submitted with the PDP that include lengthening the deceleration land for the south bound, left turn movement on Metcalf and adding a deceleration for the north bound right turn movement from Metcalf to 56th Street and adding an acceleration lane for the north bound movement form 56th Street to Metcalf. KDOT has expressed support for these recommendations. It should also be noted that KDOT has embarked on an initial study for the replacement of the Metcalf bridge over Johnson Drive, which may have an impact on the 56th/58th and Foxridge intersections. The last recommendation in the initial report submitted with the PDP has been omitted from the report submitted with the FDP. That recommendation states, "Install yield line pavement markings for the southbound left-turn movement to provide drivers with guidance for where the yield should be made." Additionally, the report notes that the left-turn movement at 56th Street and Metcalf Avenue will not operate at an acceptable level of service (LOS) without change in the form of intersection control. The report recommends partial signalization at the intersection, and this recommendation was discussed with KDOT, which has authority over movement
on Metcalf Avenue (I-635) at this intersection. KDOT does not support signalization of the intersection, citing concerns with safety and speeds on Metcalf Avenue within close proximity to the Foxridge Drive intersection.

A drainage report was also submitted with this FDP that shows while impervious area has increased with the proposed plan, peak flow rates within underground infrastructure will decrease due to an altered drainage pattern and a proposed underground storm water detention facility. Additionally, an ADS underground isolator row will be installed for water treatment, and these water quality improvements meet the MidAmerica Regional Council's (MARC) Best Management Practice (BMP) Manual water quality requirements.

Plan Review and Analysis

Municipal Code

The municipal code at $\S 410.060$ provides the parking regulations for a high-rise apartment. The required minimum is 461 stalls, or 1.5 stalls per unit.

The proposed parking exceeds the minimum requirement for on-site parking.

The municipal code at $\S 415.090$ and at $\S 415.110$ provides stipulations for required landscaping.
The landscaping requirements per municipal code have been met with the proposal.

Preliminary Development Plan Conditions of Approval

The following conditions of approval were identified during the Planning Commission and were included in the vote of approval:
(A) The Landscaping Plan shall be in accordance with the Municipal Code for native and non-invasive species.
(B) The Landscaping Plan shall be in accordance with the Municipal Code for continual maintenance and disease prevention.
(C) International Dark Sky lighting standards for 2022 shall be applied to the exterior lighting on building frontages and interior courtyard areas and submitted with the Final Development Plan.
(D) Signage will be submitted with the Final Development Plan for Planning Commission approval for private sign criteria.
(E) Window glazing shall be clear glass on frontage facing Broadmoor. No more than 25 percent of the remaining glazing shall be obscured on the rest of the other frontages and facades.
(F) Include a pet waste station near the dog run on the southwest corner and indicated the owner or owner's agent will maintain it.
(G) An ADS underground isolator row shall be installed for water quality treatment. A final Storm water Drainage Plan shall be submitted.

At the time of this report, conditions A, C, E, F, and G listed above as part of the PDP have been met with the FDP submittal. Condition D of the PDP stipulated that private sign criteria shall be submitted as part of the FDP; sign dimensions and materials for the monument sign are detailed in the FDP, which partially satisfies the condition as set forth during the public hearing. Staff will review a full signage package as required by municipal code at $\$ 430.040$; the development as proposed does not meet the criteria prescribed under $\$ 430.120$ "Private Sign Criteria." Staff will review the signage for the site upon submittal of a full sign permit application.

Recommendation

Staff recommends approval of the 5665 Foxridge Final Development Plan with the following conditions:
(A) The developer shall sign a binding agreement to maintain improvements throughout the site, including all Landscaping, prior to permit issuance.
(B) All signage shall be submitted to Staff with a sign permit application prior to installation.

Planning Commision Action

The Planning Commission will hear Case \#23-04 5665 Foxridge Final Development Plan at its March 27, 2023 meeting.

City Council Action

None

$\frac{\text { NW CORNER PERSPECTIVE }}{12=10^{\circ}}$

$\frac{\text { ENTRY COURTYARD AERIAL PERSPECTIVE }}{12=12=1 T^{2}}$

\qquad

NE CORNER PERSPECTIVE

Final Development Plan

BROADMOOR CLOSE-UP PERSPECTIVE

$\underset{\sim}{\alpha}$

Revsoons: evsons:

AERIAL VIEW

(3) EAST ELEVATION

(2) $\frac{\text { WEST ELEVATION }}{\text { WEFTHT}}$

(2) $\frac{\text { NORTHE }}{\text { NWE TH }}$ ELEVATION

(1) SOUTH ELEVATION

EXTERIOR MATERIAL LEGEND: - (1) BRICK I CUSTOM BLEND
-(5)
(1) Suwasib oomme siraw
- (2)swecel
-() swucoil

Wall SECTION
$\frac{\text { SECTION } 1}{114^{-1}=1.0^{\circ}}$

PLANT LIST:

${ }^{\text {Name }}$	Boaniaial Name	Szee ${ }^{\text {Notes }}$
Crib [Coummar Horbbeam (Nate)	Carinins belus festigata	
Treso ox (nave)	Ouecous stumaxif	
Reverich nemee	derse	${ }_{6 \text { ent }}$

General notes

1. EACH BIIDER SHALL VIITT THE SITE OF THE PROPOSEE WORK AND EXAMINE THE STTE

2. ALL NEW MANT RED
SYSTEM DESCRRTION
3. REFER TO L1.00 SERES SHEETS FOR TREE PLANTING
4. IN THE EVENT OF WORK IN OR ON THE JCW SANTIARY MAIN. ANY TREES OR PLANTIGGS PLACED THER OF AND SHALLLEE REPLACED BY THE PROPERTY OWNER AS REOUTRED BYTHE CITY,

LANDSCAPE REQUIREMENTS (MISSION, KS)
MINIUUM TREE REQUIREMENTS PER ZONING DISTRICT seetionalsmo:
FOXRIDGE DRVE $=+$ +- $006 \mathrm{~L} / 50 \mathrm{LF}=$
REQUIRED: PROVIDED:
9TREES 56TH STREET $=+$ +-533 LF/50 LF $=11$ TREES $\quad 13$ TREES

BROADMOOR STREET $=+\mid$ - 407 LF/ 50 LF $=9$ TREES 9TREES
2. 1 TREE PER DWELLING UNTT OR EVERY 3,000 SF OF LANDSCAPED OPEN SPACE EsETrovaltsoon

21,147 SF LANDSCAPED OPEN SPACE/3,000 SF = $=\frac{\text { REQUIRED: }}{\text { 7TREES }} \quad \frac{\text { PROVIDED: }}{7 \text { TREES }}$
ADDITIONALLY ONE TREE FOR EVERY 20 CARS Of PARKING AREA SHALL BE INCLLDDED
22 CARS
NG AREA SHALL BE INCLLDEDD
REQUIRED:
PROVIDED
All parking lots contaning twenty

22 SPACES X $270=4,500$ SF $\times 6 \%=$

REQURED:	PROVIDED:
356 SF	356 SF

(3) TYPICAL FREESTANDING PLANTER

(7) $\frac{V \text {-CUT EDGING DETALL }}{\text { NOT Sosut }}$

(6) PERENNIL \& GROUND COVER PLANTING
(6) $\frac{\text { PERENNIAL }}{\text { not oscale }}$

(4) $\frac{\text { DECIDOOOUS TREE }}{\text { Rote PLANTING DETALL }}$

(1) $\frac{\text { EVERGREEN TREE PLANTING DETAIL }}{\text { Notocale }}$
oneran hotes
 Mill

13. раит mant

16.

 wratumoon

1. Sisp

 14. RAMIEDE.

c.
S.

CLUBHOUSE - SEE ARCHITECTURE
2. SCULPTURE
3. LANDSCAPE HEDGE - SEE LANDSCAPE PLANS
4. 8^{\prime} CONCRETE TRAIL
5. SIGN WALL - SEE ARCHITECTURE DETAllS
6. ENTRY PLAZA
7. DOG RUN W/ PET WASTE STATION BENCH TO BE MAINTAINED BY OWNERSHIP
8. RETAINING WALL - SEE CIVIL
. TRASH ENTRANCE - SEE
ARCHITECTURE
10. DOG SPA ENTRANCE - SEE

ARCHITECTURE

1. GARAGE ENTRANCE - SE ARCHITECTURE
2. UNIT PATIOS W/ FENCES \& GATES
3. SPECIAL PAVING
4. BENCH, TYP.
5. PLANTER, TYP.
6. BIKE RACKS
7. PET WASTE STATION
8. CROSSWALK TO PARK - SEE CIVIL
9. LOADING - SEE ARCHITECTURE
10. AMENITY COURTYARD - SEE SP1.01

Revisons

NOTES.
SEE SHEET C1.02 for utlutes ano easement labels.

1. SEE SHEET C1.02 FOR UTITTES AND EASEMENT LAEELS

MKEC

Abstract

Rooberto descrpption

PAVING LEGEND

SLOPE ANALYSIS

N SITE PLAN - PHOTOMETRICS

$\frac{\text { LIGHTING POLE BASE DETAIL }}{\text { Noscale }}$

Luminaire Definition(s) - Cont

Traffic Impact Study Foxridge Mission

MISSION, KANSAS

JULY 2022

Prepared By:
7/20/2022

Kimley»)Horn

Contents

1.0 INTRODUCTION 5
1.1 REPORT PURPOSE AND OBJECTIVES 5
2.0 EXISTING CONDITIONS 6
2.1 STUDY AREA 6
2.2 STREET NETWORK 6
2.3 DATA COLLECTION 7
3.0 CRASH ANALYSIS 8
4.0 PROPOSED DEVELOPMENT 9
4.1 SITE DESCRIPTION 9
4.2 SITE CIRCULATION 9
4.3 TRIP GENERATION 9
4.4 PROJECT TRIP DISTRIBUTION AND ASSIGNMENT 10
5.0 FUTURE CONDITIONS 11
5.1 FUTURE TRAFFIC FORECASTING 11
6.0 ACCESS MANAGEMENT 12
6.1 ACCESS SPACING 12
6.2 AUXILLARY LANE ANALYSIS 12
6.3 SIGHT DISTANCE 14
7.0 INTERSECTION CAPACITY ANALYSIS 16
7.1 LEVEL OF SERVICE OVERVIEW 16
7.2 EXISTING YEAR (2022) LEVEL OF SERVICE ANALYSIS 17
7.3 EXISTING + DEVELOPMENT LEVEL OF SERVICE ANALYSIS 20
7.5 HORIZON YEAR (2042) LEVEL OF SERVICE ANALYSIS 22
8.0 CONCLUSIONS AND RECOMMENDATIONS 23
Appendix 25
TABLE 1: DEVELOPMENT TRIP GENERATION 9
TABLE 2: DEVELOPMENT TRIP DISTRIBUTION 10
TABLE 3: SIGHT DISTANCES 14
TABLE 4: LEVEL OF SERVICE 16
TABLE 5: EXISTING YEAR (2022) PEAK HOUR CONDITIONS 18
TABLE 6: EXISTING MITIGATED PEAK HOUR CONDITIONS 19
TABLE 7: EXISTING + DEVELOPMENT PEAK HOUR CONDITIONS 21
TABLE 8: EXISTING + DEVELOPMENT MITIGATED PEAK HOUR CONDITIONS 21
TABLE 9: HORIZON YEAR (2042) PEAK HOUR CONDITIONS 22

EXHIBITS (SEE APPENDIX A)

EXHIBIT 1: PROJECT SITE LOCATION AND STUDY AREA
EXHIBIT 2: EXISTING YEAR (2022) PEAK HOUR TRAFFIC VOLUMES
EXHIBIT 3: EXISTING GEOMETRY AND INTERSECTION CONTROL
EXHIBIT 4: CRASH DIAGRAM
EXHIBIT 5: SITE TRIP DISTRIBUTION
EXHIBIT 6: PROJECT TRAFFIC
EXHIBIT 7: EXISTING PLUS PROPOSED DEVELOPMENT PEAK HOUR TRAFFIC
EXHIBIT 8: EXISTING PLUS PROPOSED DEVELOPMENT GEOMETRY AND INTERSECTION CONTROL

EXHIBIT 9: HORIZON YEAR (2042) PEAK HOUR TRAFFIC VOLUMES
EXHIBIT 10: $56^{\text {TH }}$ STREET \& METCALF AVENUE IMPROVEMENTS LAYOUT
EXHIBIT 11: WB-67 SB LEFT AND WB RIGHT TURING MOVEMENT
EXHIBIT 12: WB-67 NB LEFT TURING MOVEMENT
EXHIBIT 13: SB-40 NB RIGHT TURING MOVEMENT
EXHIBIT 14: SB-40 SB RIGHT TURING MOVEMENT
EXHIBIT 15: SB-40 SB LEFT TURING MOVEMENT

1.0 INTRODUCTION

This report serves as the traffic analysis for the Foxridge Mission development, located at the southeast corner of the $56^{\text {th }}$ Street \& Foxridge Drive intersection in Mission, Kansas. The location of the development is shown on Exhibit 1 in Appendix A.

The following traffic analysis focused on two analysis years: The Existing Year (2022) and the Horizon Year (2042).

1.1 REPORT PURPOSE AND OBJECTIVES

The purpose of this study is to address traffic and transportation impacts of the proposed development on surrounding streets and intersections. This traffic impact study was prepared based on criteria set forth by the City of Mission. The following information is provided:

- A description and map of the existing and proposed street network to be affected by the proposed development. This information includes existing and proposed roadway characteristics and existing year (2022) traffic volumes and horizon year (2042) traffic volumes.
- Trip generation calculations based on the Institute of Traffic Engineers (ITE) Trip Generation Manual, $11^{\text {th }}$ Edition, for the proposed development. In addition, projected trip distributions onto the street network are provided.
- Analysis of impacts of the traffic generated by the proposed development on the street network, including analysis of peak period levels of service (LOS), delay times, and queuing at study area intersections.
- Evaluation of sight distances at site driveway intersections.
- Review crash data for the $56^{\text {th }}$ Street $\&$ Metcalf Avenue intersection area.
- Discussion of potential improvements and traffic management measures identified to mitigate operational concerns.

In summary, the study is to determine the trip generation of the Foxridge Mission development, assign new development trips to the street network, analyze various scenarios to determine the impacts of proposed site traffic, and identify potential mitigation measures needed to achieve acceptable operations at the study intersections.

2.0 EXISTING CONDITIONS

2.1 STUDY AREA

The proposed development site is in Mission, Kansas. The 5 -acre site currently consists of a vacant office building and large surface parking lot. The 39,800 square foot office building was formerly a call center for a retail chain. North and south of the proposed site there are commercial developments consisting predominately of office uses. Broadmoor Park is a city park located to the southeast of the site. A parking lot for the park and single-family homes are located to the east of the site. West of the site across Metcalf Avenue there are multifamily residential developments.

Through discussion with the City of Mission, the following intersections were included within the study area for the traffic analysis. The list provides the existing intersection control for each of the study intersections.

- $56^{\text {th }}$ Street \& Metcalf Avenue (Side Street Stop)
- $56^{\text {th }}$ Street \& Foxridge Drive (Three-Way Stop)
- $58^{\text {th }}$ Street \& Metcalf Avenue (Side Street Yield)
- $58^{\text {th }}$ Street \& Foxridge Drive (Side Street Stop)
- Johnson Drive and Broadmoor Street (Signalized)

2.2 STREET NETWORK

The existing street network within the study area includes Metcalf Avenue (US-69 Highway), $56^{\text {th }}$ Street, Foxridge Drive, $58^{\text {th }}$ Street, Broadmoor Street, and Johnson Drive. Each of these roadways are part of one or more of the study intersections. The following provides a summary of the characteristics of the existing streets within the study area:

Metcalf Avenue is a north-south expressway that is part of the state highway system, designated at US69 Highway. Metcalf Avenue continues north of the study area to become I-635 at the interchange with I35. According to the Kansas Department of Transportation (KDOT) the section of US-69 within the study area is a Class D route with partial access control. This segment of US-69 is part of the National Highway System but KDOT does not have a corridor plan for it. KDOT maps indicate that the average daily traffic volume is 34,800 , with approximately 3% being truck traffic.

Metcalf Avenue is a four-lane, divided roadway with 11 -foot paved shoulders on both sides of the road. There are ditches along both sides of the roadway and there are no sidewalks. The median is turf, and it is depressed. Near the intersection with $56^{\text {th }}$ Street, the roadway widens to develop north-south left-turn lanes with raised median islands for channelization. The $56^{\text {th }}$ Street \& Metcalf Avenue intersection is limited to left-in/right-in/right-out access. The horizontal alignment of the roadway is straight, and the vertical alignment has a slight crest vertical curve to the south of $56^{\text {th }}$ Street. The posted speed limit is 55 miles per hour (mph).
$56^{\text {th }}$ Street is an east-west local road, located at the northern boundary of the development site. The twolane road has curbs and gutters and is 30 -feet wide, measured between the backs of curbs. There are no sidewalks or bicycle facilities. Parking is prohibited along the south side of the road. $56^{\text {th }}$ Street extends approximately 650 feet east from Metcalf Avenue, then there is a 90 -degree horizontal turn to the south and the street name changes to Broadmoor Street. Other than the 90 -degree turn, the horizontal and vertical alignments of the roadway can be characterized as straight and level. There is no posted speed limit on $56^{\text {th }}$ Street.

Broadmoor Street is a north-south local street that runs along the east side of the development site. The two-lane road has curbs and gutters and is 36 -feet wide, measured between the backs of curbs. There is a sidewalk along the east side of Broadmoor Street adjacent to the development site, but there are no bicycle facilities. Parking is prohibited along both sides of the road. The horizontal alignment is generally straight, with a slight downhill grade when traveling from north to south. There is no posted speed limit on Broadmoor Street within the study area.

Foxridge Drive is a north-south local street located on the western boundary of the proposed site. Foxridge Drive serves as a two-lane frontage road along the east side of Metcalf Avenue, and the street is maintained by the City of Mission. There is approximately 60 feet between the edges of pavement on Metcalf Avenue and Foxridge Drive. Due to the close spacing, the intersection of $56^{\text {th }}$ Street \& Foxridge Drive is controlled with stop signs for the northbound, southbound, and westbound approaches, with eastbound traffic being uncontrolled. This form of three-way stop control is intended to eliminate the potential for eastbound traffic to queue back to Metcalf Avenue.

Adjacent to the development site, Foxridge Drive is 24 feet in width with turf slopes to ditches along each side. There are currently no sidewalks or bicycle facilities south of $56^{\text {th }}$ Street. To the north of $56^{\text {th }}$ Street, Foxridge Drive has curbs and gutters with a sidewalk on along the east side of the street. There are also pavement markings indicating that it is a bicycle route. "Sharrow" pavement markings designate that bicycles are to share the lanes with vehicular traffic. The horizontal alignment of the road is straight, but the vertical alignment is characterized by a crest vertical curve to the south of $56^{\text {th }}$ Street. The posted speed limit on Foxridge Drive is 35 mph .

Johnson Drive is an east-west minor arterial roadway that is a commercial corridor providing access to Downtown Mission. The roadway has two through lanes in each direction There is a partial interchange with Metcalf Avenue (US-69) at Johnson Drive.
$5^{\text {th }}$ Street is an east-west local road extending east from Metcalf Avenue. At the intersection with Metcalf Avenue, $58^{\text {th }}$ Street is limited to right-turns only with a large channelizing island. The right turns serve as exit ramps to/from the northbound lanes, completing the interchange with Johnson Drive.

2.3 DATA COLLECTION

Turning Movement Counts (TMCs) were collected the study intersections on Tuesday, February $1^{\text {st }}, 2022$. The turning movement count data collected is included in Appendix B. The AM peak hour occurred between 7:30 AM and 8:30 AM, and the PM peak hour occurred between 4:45 PM and 5:45 PM. The existing conditions peak hour turning movement volumes are shown on Exhibit 2. The existing geometry with lane configurations and intersection control at the study intersections is shown in Exhibit 3.

3.0 CRASH ANALYSIS

The City of Mission provided crash reports for the $56^{\text {th }}$ Street \& Metcalf Avenue intersection area. From January 1, 2017 to January 31, 2022 a total of 16 crashes were reported. Upon review of the reports, it was determined that some of the crashes occurred at the $56^{\text {th }}$ Street \& Foxridge Drive intersection, which is in close proximity to Metcalf Avenue. Twelve of the crashes occurred at the Metcalf Avenue intersection and four occurred at Foxridge Drive. This corresponds to a rate of 0.21 crashes per million entering vehicles (MEV) at $56^{\text {th }}$ Street \& Metcalf Avenue, and 0.45 crashes per MEV at $56^{\text {th }}$ Street \& Foxridge Drive during the 49-month analysis period. For comparison purposes, the average crash rate at intersections along the state highway system is 0.4 crashes per MEV.

To assist in identifying crash patterns or tendencies, a crash diagram was prepared and is shown on Exhibit
4 in Appendix A. Some pertinent information regarding the crash analysis is provided below.

- There were six rear end crashes reported in the channelized westbound right-turn lane on $56^{\text {th }}$ Street at Metcalf Avenue. The narratives in several of the crash reports indicate that stopped westbound drivers would start to move forward to complete the right-turn movement but would suddenly stop resulting in a rear end crash. This appears to be attributed to westbound drivers having difficulty identifying gaps in the flow of northbound traffic on Metcalf Avenue.
- Three crashes reported involved a southbound left-turn driver colliding with a northbound through vehicle. Two of the three crashes resulted in a personal injury. Left turn and angle crashes are a concern because they are typically the most severe types of intersection related crashes.
- Two other crashes were reported in the northbound lanes of Metcalf Avenue just north of $56^{\text {th }}$ Street. Both crashes were related to westbound right turn traffic merging onto northbound Metcalf Avenue. This situation resulted in a side-swipe collision and a rear end collision. One of the crashes occurred shortly after one of the southbound left-turn crashes previously described.

The crash analysis indicates that safety improvements should be considered to address some of the concerns related to the westbound right-turn maneuver.

4.0 PROPOSED DEVELOPMENT

4.1 SITE DESCRIPTION

The proposed development site is bounded by $56^{\text {th }}$ Street on the north, Broadmoor Street on the east, Foxridge Drive on the west, and an office building and surface parking lot on the south. The proposed Foxridge Mission development includes a five-story multifamily residential building that wraps around an amenity courtyard in the center. There will be a parking garage for residents below the building. Surface parking is provided in a small lot for visitors and guests on the west side of the building. The proposed development site plan is included in Appendix C for reference.

4.2 SITE CIRCULATION

The proposed development has several access points along the north, east, and west sides of the site. The parking garage has two proposed full accesses, one is located on $56^{\text {th }}$ Street and the other is located on Broadmoor Street. The proposed Access A on $56^{\text {th }}$ Street is to be located approximately 260 feet east of Foxridge Drive, at the location of an existing driveway. Access A is generally aligned with the existing access on the north side of $56^{\text {th }}$ Street The other garage access, Access B, is to be located on Broadmoor Street, approximately 320 feet south of $56^{\text {th }}$ Street.

Two accesses are proposed on Foxridge Drive. Access C is located approximately 170 feet south of $56^{\text {th }}$ Street on Foxridge Drive and will serve as the exit only to the surface parking lot on the west side of the site. Access D is located approximately 200 feet south of Access C on Foxridge Drive and will serve as the entrance to the surface parking lot.
There are two other accesses proposed that will be for service uses only. An access for garbage trucks is located on $56^{\text {th }}$ Street 65 feet west of Access A. An access for loading moving or delivery trucks is located on Broadmoor Street roughly 140 feet south of $56^{\text {th }}$ Street. Neither of these accesses were analyzed because they will be seldom used. Single-unit truck (SU-30), similar to a rental moving truck, is the largest vehicle expected to access the site.

As part of the development plan, new sidewalks will be constructed around the entire perimeter of the development. Along the east side of Foxridge Drive, the sidewalk will be wider to encourage bicycle and pedestrian traffic. A crosswalk is proposed across Broadmoor Street in the southeast corner of the development to connect to the existing sidewalk network along the west side of Broadmoor Street.

4.3 TRIP GENERATION

Trip generation estimates were prepared using the ITE Trip Generation Manual, $11^{\text {th }}$ Edition. Table 1 shows the expected trips to be generated by the proposed development. The total trip generation is anticipated to be 1,418 daily trips, 123 trips during the AM peak hour (28 entering and 95 exiting), and 120 trips during the PM peak hour (73 entering and 47 exiting).

TABLE 1: DEVELOPMENT TRIP GENERATION

Land Use Description	$\begin{aligned} & \text { ITE } \\ & \text { LUC } \end{aligned}$	Intensity / Units	Daily	AM Peak Hour			PM Peak Hour		
				In	Out	Total	In	Out	Total
Multifamily Housing (Mid-Rise)	221	307 Dwelling Units	1,418	28	95	123	73	47	120

Appendix D provides the calculations from the ITE Trip Generation Manual that were used to determine the trip generation for the proposed development.

4.4 PROJECT TRIP DISTRIBUTION AND ASSIGNMENT

The estimated trips generated by the proposed development were assigned to the street network based on the trip distribution summarized in Table 2. This distribution is based on existing traffic patterns, commuting patterns, and engineering judgment. The detailed distribution patterns through the study intersections are shown in Exhibit 5 in Appendix A.

TABLE 2: DEVELOPMENT TRIP DISTRIBUTION

Direction To/From	Percentage
North on Metcalf Avenue	35%
North on Foxridge Drive	5%
East on Johnson Drive	10%
South on Broadmoor Street	5%
South on Metcalf Avenue	35%
West on Johnson Drive	10%
Total	$\mathbf{1 0 0 \%}$

Exhibit 6 shows the development trip assignment. In general, most of the site traffic was assigned to Metcalf Avenue, due to the roadway's connection to the regional highway system and the high mobility of Metcalf Avenue. Fewer trips were assigned to Johnson Drive, Foxridge Drive, and Broadmoor Street.

The proposed development trip assignments were added to the existing conditions traffic volumes. Exhibit 7 illustrates the Existing plus Proposed Development peak hour traffic volumes.

5.0 FUTURE CONDITIONS

The traffic analysis focused on two analysis years: Existing Year (2022) and Horizon Year (2042).

5.1 FUTURE TRAFFIC FORECASTING

For the horizon year, background traffic growth was added to the existing traffic volumes, then the proposed development site trips were added. To estimate background traffic growth, the existing traffic volumes at the study intersections were assumed to increase at a rate of 0.5% per year. The annual growth rate was determined by analyzing traffic volumes on Metcalf Avenue over the past 20 years. The historical data on Metcalf fluctuated from year to year but was generally stagnant. Therefore, the 0.5% annual growth rate is a conservative assumption for this area and reflects the mature nature of the surrounding community.

Exhibit 8 provides the Horizon Year (2042) peak hour traffic volumes.

6.0 ACCESS MANAGEMENT

The City of Mission does not have access management guidelines. For the purposes of this study, the Kansas Department of Transportation's Access Management Policy was used to evaluate access spacing and the need for turn lanes at intersections.

6.1 ACCESS SPACING

The Access Management Policy includes criteria for minimum spacing between access points. The criteria depend on the type of roadway, area type, and posted speed limit. There is no posted speed limit on $56^{\text {th }}$ Street or Broadmoor Street, so the speed limit is assumed to be 30 mph . For unsignalized access points in developed areas, the minimum spacing is generally 125 feet for a $30-\mathrm{mph}$ roadway and 165 feet for a 35 mph roadway.

Based on this criteria, Access A is appropriately spaced from Foxridge Drive. There are two existing accesses on the north side of $56^{\text {th }}$ Street. One aligns with Access A and the other is offset 75 feet to the east. This offset is less than the KDOT minimum access spacing, however this is an existing condition. It should be noted that Access A does align with one existing access, which follows good access management practice. In general, $56^{\text {th }}$ Street is characterized by low speeds and low traffic volumes. The chances for conflicts are low, and should they arise drivers have adequate time to identify and, therefore no safety or operational issues are expected due to the close spacing of these access points.

Access B is spaced appropriately from the nearest driveway along the west side of Broadmoor Street. The access is located between two driveways to a parking lot for Broadmoor Park along the east side of the street. Access B is spaced 145 feet from the north parking lot access and 135 feet from the south park access. These spacings meet KDOT minimum spacing criteria.

Access C and D are spaced appropriately from $56^{\text {th }}$ Street and from each other according to the 35 mph criteria. There is an existing access to an office building located 80 feet south of Access D along Foxridge Drive. Access D is expected to have a low volume of turning traffic and will be limited to entering traffic only. With no exiting traffic, the number of potential conflict points at the driveway is reduced. Therefore, safety or operational issues are expected due to the close spacing of these access points.

6.2 AUXILLARY LANE ANALYSIS

The need for turn lanes are based on capacity, level of service, and safety factors. The Access Management Policy provides turn lane warrants for right- and left-turn lanes based on traffic volumes and operating speeds. The traffic volumes developed for this study were compared to the turn warranting volume thresholds. All traffic volumes at the site accesses were found to be well below the warranting thresholds. Therefore, turn lanes are not warranted at any of the site driveway intersections.
There are several existing turn lanes at the $56^{\text {th }}$ Street \& Metcalf Avenue intersection. The existing southbound left-turn lane measures roughly 350 feet in length. According to the Access Management Policy, left-turn lanes on a $55-\mathrm{mph}$ roadway should provide 400 feet of deceleration distance plus storage length for the $95^{\text {th }}$ percentile queue length. Given this information, the existing turn lane does not meet KDOT turn lane length requirements.

The existing northbound right-turn lane at the intersection measures 225 feet in length. The Access Management Policy indicates that a right-turn lane on a $55-\mathrm{mph}$ roadway should have 335 feet of
deceleration distance plus a minimum of 50 feet of storage for a total of 385 feet. Therefore, the existing turn lane does not meet KDOT requirements.

According to the Access Management Policy, acceleration lanes are typically used at unsignalized intersections that experience a high rate of accidents related to the speed differential caused by vehicles making a turning maneuver onto the highway or where large trucks frequently turn onto the highway. Guidance for the use of acceleration lanes includes in undeveloped areas with free-flow right-turn lanes, where there are 45 large trucks turning right onto a highway during the peak hour, or where there is a crash history involving right-turn vehicles.

For the westbound right-turn movement at $56^{\text {th }}$ Street and Metcalf Avenue, there have been several crashes that may be attributed to the speed differential between through traffic and turning traffic. The speed differential may be the reason why drivers are having difficulty identifying gaps in the flow of northbound traffic. While the crash rate at the intersection is not high and there is a very low volume of trucks making the westbound right-turn movement, an acceleration lane for this movement would improve safety. The need for an acceleration lane will be further discussed in the operational analysis section of this study.

6.3 SIGHT DISTANCE

Sight distances is the length of a roadway that is visible to a driver. Sufficient sight distances should be provided to allow drivers to control their vehicles and avoid collisions. There are several aspects of sight distances that are applicable to the study intersections. First, stopping sight distance is the length to enable a driver to react and stop their vehicle before reaching an object in its path. Second, intersection sight distance is provided to allow the drivers of stopped vehicles to depart from their intersection approach and enter or cross the uncontrolled street. Intersections sight distances are generous, allowing enough distance for the stopped driver to complete their turning or crossing maneuver without requiring through traffic on the uncontrolled street to reduce their speed.

Sight distances were measured in the field at the proposed site driveway intersections along Foxridge Drive, $56^{\text {th }}$ Street, and Broadmoor Street and are provided in Table 3. The measured sight distances were compared to the recommended stopping and intersection sight distances from A Policy on Geometric Design of Highways and Streets, 7th Edition, also referred to as the AASHTO Green Book published by the American Association of State Highway and Transportation Officials (AASHTO). The recommended sight distances for 30 mph are shown in the table for the $56^{\text {th }}$ Street and the Broadmoor Street accesses, since there are no posted speed limits on those roadways. The recommended sight distances for 35 mph are shown for the accesses on Foxridge Drive, which corresponds to the posted speed limit.

TABLE 3: SIGHT DISTANCES

Intersection	Direction Looking	Intersection Sight Distance (feet)		Stopping Sight Distance (feet)	
		Recommended	Field Measurement	Recommended	
 Access A	East	290	335^{*}	290	200
Broadmoor Street \& Access B	West	330	290	330	200
 Access C	South	315	290	315	200
Foxrth Access D	South	>500	335	>500	200

* Vehicle speeds are lower at this location, therefore intersection sight distance can be reduced

There are several variations in the recommended distances in Table 3. The recommended intersection sight distances are slightly different for left-turn and right-turn movements. For left turns from a stop controlled minor street approach, sight distance is longer than for a right turn because a vehicle must travel farther to complete the left-turn movement. At Access C, the recommended stopping sight distance was adjusted for the 4% grade of the roadway. For Access D the recommended intersection sight distance is for a left turn from the uncontrolled major street approach. Sight distances were not provided in Table 3 for westbound movements at Access D because it will be an entry drive in the eastbound direction only.

Based on the results in Table 3, all sight distances are adequate at the proposed access points. The intersection sight distance in looking to the east from Access A is limited by the tight horizontal curve located at the northeast corner of the site. It is worth noting that drivers must reduce their speeds to between 10 and 15 mph to travel through the curve. Therefore, the measured sight distance is appropriate for the lower speeds that vehicles are likely traveling at when exiting the curve. Several on street parking spaces are
proposed on $56^{\text {th }}$ Street and on Broadmoor Street as part of the development plan. Sight distances looking to the east from Access A and looking to the north from Access B may be reduced when parked vehicles are present in these spaces.

Sight distances were not measured at the existing $56^{\text {th }}$ Street \& Metcalf Avenue intersection. No modifications are considered in this study that would affect sight distances at the intersection.

7.0 INTERSECTION CAPACITY ANALYSIS

7.1 LEVEL OF SERVICE OVERVIEW

Intersection capacity analysis was performed at the study intersections for the following scenarios:

- Existing Year (2022)
- Existing plus Proposed Development
- Existing plus Proposed Development with Mitigation
- Future Year (2042) with Mitigation

The capacity analysis was performed for the weekday AM and PM peak hours using Synchro traffic modeling software to determine intersection delay and level of service (LOS). Calculations were performed based on the methodologies outlined in the Highway Capacity Manual (HCM, $6^{\text {th }}$ Edition Microsimulation with SimTraffic software was used for the $56^{\text {th }}$ Street and Foxridge Drive intersections because the $6^{\text {th }}$ Edition is not compatible with the unique three-way stop control at this location.

LOS is a quantitative measure used by traffic engineers to describe the operations of an intersection. It ranges from A to F, with A being the best and F being the worst level of operation. LOS A conditions are characterized by minimal vehicle delay and free-flow conditions, while LOS F is characterized by long vehicle delay - usually when demand exceeds available roadway capacity. Table 4 shows the definition of LOS for unsignalized and signalized intersections.

TABLE 4: LEVEL OF SERVICE

Level of Service	Average Control Delay (seconds/vehicle) at:	
	Unsignalized Intersections	Signalized Intersections
A	$0-10$	$0-10$
B	$>10-15$	$>10-20$
C	$>15-25$	$>20-35$
D	$>25-35$	$>35-55$
E	$>35-50$	$>55-80$
F	>50	>80

Levels of service are evaluated based on the movement groupings which are required to yield to other traffic. Typically, these are left turns off the major street and the side street approaches for two-way stopcontrolled intersections. For signalized intersections each movement grouping is evaluated, and LOS is evaluated for the intersection as a whole.

Although LOS E is defined as at-capacity, LOS D is generally considered the minimum acceptable level of operation at an intersection. At unsignalized intersections LOS E, or even F are often considered acceptable for low to moderate traffic volumes where the installation of a traffic signal is not warranted by the conditions at the intersection, or the location has been deemed undesirable for signalization.

Traffic queues were also evaluated as part of the analyses. Long traffic queues which extend beyond the amount of storage available, either between intersections or within turn lanes, can have significant impacts on operations. The $95^{\text {th }}$ percentile vehicular queues were analyzed to ensure the analyses are reflective of the physical constraints of the study intersections and to identify if additional storage is needed for turn
lanes. The $95^{\text {th }}$ percentile queue represents the queue length that has only a 5% chance of being exceeded during the analysis period.

7.2 EXISTING YEAR (2022) LEVEL OF SERVICE ANALYSIS

Capacity analysis was conducted for Existing Year (2022) traffic conditions at the study intersections to determine baseline conditions for the existing analysis year and to calibrate the models. The analysis was performed for weekday AM and PM peak hours and is based on the lane configurations, traffic controls, and traffic volumes shown on Exhibits 2 and 3.

The model results were compared to actual conditions at the study intersections to determine the accuracy of the model. Significant discrepancies were identified for the southbound left-turn movement at the intersection of $56^{\text {th }}$ Street \& Metcalf Avenue. The Synchro model indicated that delays were 25 seconds and $95^{\text {th }}$ percentile queue lengths were less than 50 feet. However, queues of up to 10 vehicles, approximately 250 feet, were observed during the PM peak hour.

The discrepancies between the analysis and actual conditions are likely due to variability in the gaps that drivers will accept when making the southbound left-turn movement. There are several possible reasons for this variability. First, given the higher speeds on Metcalf Avenue, some drivers are more hesitant than others when identifying adequate gaps in the heavy flow of northbound through traffic. Additionally, sight distances looking to the south along Metcalf Avenue appear to be adequate but are somewhat limited by a crest vertical curve. Lastly, the geometry of the raised channelizing island on $56^{\text {th }}$ Street is awkward and could be causing some hesitation and confusion for drivers.

To model operations more accurately for the southbound left-turn movement at $56^{\text {th }}$ Street \& Metcalf Avenue, an intersection delay study was conducted. The delay study was performed using the video recorded for the PM peak hour turning movement counts. The results of the delay study found that the average delay for the movement is 48 seconds. The delay study is included in Appendix \mathbf{E}.

The Synchro model was then calibrated to actual conditions. The critical gap time in the Synchro analysis was increased until the delay for the southbound left-turn movement more closely matched the actual delay results of the delay study. This resulted in the critical gap increasing from 4.1 seconds to 4.8 seconds.

The adjustments to the critical gap time do more accurately model delays, but the queueing results from the Synchro model for this movement are still less than actual conditions. It is worth noting that the long queue lengths observed during the PM peak hour occurred only between 5:05 and 5:15 PM. These queues did eventually clear, and queues were not as long during the remainder of the analysis period.

Table 5 provides a summary of the capacity analysis at the study intersections. The Synchro reports are provided in Appendix \mathbf{F}.

The results in Table 5 indicate that there are two movements that operate at lower levels of service during the PM peak hour. All other study intersections currently operate at acceptable levels of service.

The westbound right-turn at $58^{\text {th }}$ Street \& Metcalf Avenue operates at LOS F during the PM peak hour with lengthy queues. The queues spill back through the adjacent Foxridge Drive intersection. This is likely due to the office employees exiting the nearby office buildings in the PM peak hour and using $58^{\text {th }}$ Street to access Metcalf Avenue. It is not uncommon for minor street stop-controlled movements to operate at lower LOS during peak times along high volume streets. Therefore, no improvements are identified to address existing LOS F conditions at $58^{\text {th }}$ Street \& Metcalf Avenue.

TABLE 5: EXISTING YEAR (2022) PEAK HOUR CONDITIONS

	Intersection	Control	Approach	Operational Analysis Results					
				AM Peak Hour			PM Peak Hour		
				Delay (sec/veh)	LOS		$\begin{gathered} \text { Delay } \\ \text { (sec/veh) } \end{gathered}$	LOS	95\% Queue
1	$56^{\text {th }}$ Street \& Metcalf Avenue	Side Street Stop	EB	20.8	C	< 50'	18.6	C	< 50'
			WB	17.8	C	< 50'	28.1	D	$<50^{\prime}$
			NBL	18.2	C	< $50{ }^{\prime}$	16.7	C	< $50{ }^{\prime}$
			SBL	27.1	D	60^{\prime}	46.5	E	80^{\prime}
2	$56^{\text {th }}$ Street \& Foxridge Drive ${ }^{1}$	Three-Way Stop	WB	2.9	A	< 50'	4.0	A	68^{\prime}
			NB	3.0	A	< 50	3.7	A	< 50
			SB	3.2	A	67^{\prime}	3.5	A	72^{\prime}
3	$58^{\text {th }}$ Street \& Metcalf Avenue	Side Street Yield	WB	31.4	D	93^{\prime}	112.6	F	250'
4	 Foxridge Drive	$\begin{gathered} \text { Side Street } \\ \text { Stop } \\ \hline \end{gathered}$	EBL	7.6	A	< 50'	7.8	A	< 50'
			SB	10.5	B	< 50'	10.8	B	< 50'
5	Johnson Drive \& Broadmoor Street	Traffic Signal	EBL	12.1	B	< 50'	14.3	B	60^{\prime}
			EB T/R	15.7	B	115'	20.5	C	$218{ }^{\prime}$
			WBL	12.7	B	< 50'	15.1	B	< $50{ }^{\prime}$
			WB T/R	16.2	B	75^{\prime}	19.2	B	153'
			NBL	17.3	B	$<50^{\prime}$	20.8	C	83^{\prime}
			NB T/R	20.7	C	< 50'	24.6	C	105'
			SBL	17.6	B	$<50^{\prime}$	22.0	C	< 50'
			SBT	19.7	B	$<50^{\prime}$	25.4	C	50^{\prime}
			SBR	21.7	C	< 50'	30.0	C	100'
			Overall	16.2	B	--	20.7	C	--

${ }^{1}$ SimTraffic results provided because HCM will not model 3-way stop control
The southbound left-turn at $56^{\text {th }}$ Street \& Metcalf Avenue currently operates at LOS E during the PM peak hour. The volume to capacity ratio (v/c) for this movement is 0.58 , indicating that the movement is below capacity. As previously mentioned, southbound left turn queue lengths were observed to be approximately 250 feet during the PM peak hour, while the analysis results indicate a $95^{\text {th }}$ percentile queue of 80 feet. The results of the delay study indicate that 250 feet is representative of the actual $95^{\text {th }}$ percentile queue length, and queues are contained within the 350 -foot storage length of the existing left-turn lane, but there is limited space for deceleration.

The existing raised channelizing island on the east leg of $56^{\text {th }}$ Street and Metcalf Avenue may be causing some operational inefficiencies at the intersection. The southwest corner of the island is close to the wheel path of southbound left-turning vehicles. This may be causing drivers to have some hesitation when making the southbound left-turn, leading to the increased critical gap time. Additionally, the shape of the island directs westbound traffic in a sweeping right-turn movement. This geometry results in an acute angle of intersection, which is less desirable for a yield-controlled movement because drivers have to look over their shoulder to identify gaps in the flow of oncoming traffic. The westbound right turn operates at LOS C and D during the AM and PM peak hours, respectively.

Based on the deficiencies observed, several mitigations are identified to improve safety and operations at $56^{\text {th }}$ Street \& Metcalf Avenue. These improvements are based on current KDOT standards.

- Lengthen the southbound left-turn lane to provide a total length of 650 feet plus a 180 -foot straight line taper to accommodate deceleration and storage for 250 -foot queues.
- Lengthen the northbound right-turn lane to provide a total length of 385 feet plus a 180 -foot straight line taper.
- Construct a 565-foot acceleration lane with a 300-foot straight line taper on northbound Metcalf Avenue for the westbound right-turn movement to enter the highway as a free-flow movement.
- Reconfigure the east leg of the intersection including the raised channelizing island to better accommodate turning movements. A conceptual layout of the improvements at the intersection shown on Figure 10 in the Appendix. Illustrations of the associated vehicular turning movements are shown on Figures 11 through 15. The truck turning movements to/from Metcalf Avenue to $56^{\text {th }}$ Street are shown using a WB-67 vehicle since Metcalf Avenue is part of the state highway system. The turning movements to/from Foxridge Drive are shown with a SB-40 vehicle, which is similar to a large school bus or fire truck. It is worth noting that the existing geometry at the intersection does not accommodate the WB-67 or SB-40 for most turning movements.

The acceleration lane length of 565 feet is based on information from Tables 10-4 and 10-5 in the AASHTO Green Book. Table 10-4 in the Green Book indicates that for a 55-mph highway and a ramp speed of 15 mph (free-flow right-turn speed), the acceleration lane length needed is 900 feet. Table 10-5 provides adjustment factors based on grades. For a 3% downgrade on a $55-\mathrm{mph}$ highway, the adjustment factor is 0.625 . Multiplying 900 feet by 0.625 results in 565 feet for the length of the acceleration lane.

Table 6 provides a summary of the capacity analysis at the $56^{\text {th }}$ Street \& Metcalf Avenue study intersection with the mitigations identified. The Synchro reports are provided in Appendix F.

TABLE 6: EXISTING MITIGATED PEAK HOUR CONDITIONS

	Intersection	Control	Approach	Operational Analysis Results					
				AM Peak Hour			PM Peak Hour		
				Delay ($\mathrm{sec} / \mathrm{veh}$)	LOS	$\begin{gathered} 95 \% \\ \text { Queue } \end{gathered}$	Delay (sec/veh)	LOS	$\begin{gathered} 95 \% \\ \text { Queue } \end{gathered}$
1	56 ${ }^{\text {th }}$ Street \& Metcalf Avenue	Side Street Stop	EB	20.8	C	< 50'	18.6	C	< 50'
			WB	0.0	A	0 '	0.0	A	$0{ }^{\prime}$
			NBL	18.2	C	< 50'	16.7	C	< 50'
			SBL	27.1	D	60^{\prime}	46.5	E	80^{\prime}

The mitigations identified will have several benefits. Lengthening the turn lanes will improve safety by allowing turning traffic additional distance to move out of the through lanes of Metcalf Avenue. The acceleration lane will create a free-flow movement for the westbound right-turn and eliminate the potential for the westbound right-turn movement to queue back through the Foxridge Drive intersection. Additionally, if the delays at $58^{\text {th }}$ Street \& Metcalf Avenue are unacceptable for westbound drivers, they can instead use Broadmoor Street and $56^{\text {th }}$ Street as an alternate route to access the acceleration lane. This could improve the level of service at $58^{\text {th }}$ Street \& Metcalf Avenue. There is ample capacity along both Broadmoor Street and $56^{\text {th }}$ Street to accommodate additional traffic should some level of diversion occur. The geometric improvements to the east leg of the intersection will better accommodate turning traffic, which could reduce the critical gap time and provide some operational benefit for the southbound left-turn movement.

The southbound left-turn movement at the intersection is projected to operate at LOS E with the mitigations identified. None of the mitigations will create gaps in the flow of northbound Metcalf Avenue, therefore operations for this movement are expected to be similar to existing conditions. The southbound left-turn movement at $56^{\text {th }}$ Street \& Metcalf Avenue will not operate at an acceptable level of service without a change in the form of intersection control.

Given the low level of service for the southbound left-turn and the indication from the crash analysis that drivers were having difficulty identifying adequate gaps in the flow of northbound traffic, signal warrant analysis was performed for the $56^{\text {th }}$ Street \& Metcalf Avenue intersection. The existing traffic volumes collected for this study were compared to the Four-Hour Vehicular Volume warrant of the Manual on Uniform Traffic Control Devices (MUTCD). The warrant analysis is included in Appendix G.

Since the southbound left-turn movement is the primary reason to evaluate signalization, the volume for this movement was considered the minor street and the combined northbound right-turn and through volume was considered the major street volume for the purpose of this warrant analysis. This methodology is described in the optional guidance of Section 4C. 01 of the MUTCD. Using these volumes, the Four-Hour Vehicular Volume warrant is satisfied for existing conditions.

The entire $56^{\text {th }}$ Street \& Metcalf Avenue intersection would not require signalization, since controlling the southbound left-turn movement would not impact southbound through traffic. Only partial signalization of the intersection would be needed. The northbound right-turn and through movements, westbound right-turn movement and southbound left-turn movements could be signal controlled while the southbound through, northbound left-turn, or eastbound right-turn movements could remain as side street stop controlled.

Partial signalization would be expected to have several safety and operational benefits. The signal would create gaps in the flow of northbound traffic and assign the right-of-way for southbound left-turn traffic. The crash analysis in this study found that some drivers have had difficulty identifying adequate gaps when making the southbound left-turn and the westbound right-turn movements. Protected signal phasing for the southbound left-turn movement would also reduce the risk for left-turn crashes, which tend to be a more severe crash type. Partial signalization would be expected to improve the level of service and reduce queue lengths for the southbound left-turn movement.

Potential improvements at the $56^{\text {th }}$ Street \& Metcalf Avenue intersection were discussed at a meeting with KDOT staff. KDOT staff does not support a traffic signal installation at this intersection. KDOT staff cited concerns about safety because of the speeds of traffic on Metcalf Avenue and the close proximity of the Foxridge Drive intersection. Since the intersection is KDOT's jurisdiction, a traffic signal will not be evaluated as a potential mitigation.

7.3 EXISTING + DEVELOPMENT LEVEL OF SERVICE ANALYSIS

Capacity analysis was conducted for Existing plus Proposed Development traffic conditions at the study intersections to determine the impacts of the proposed development site traffic. The analysis was performed for weekday AM and PM peak hours and is based on the lane configurations, traffic controls, and traffic volumes shown on Exhibits 7 and 8.

Table 7 provides a summary of the capacity analysis at the study intersections. The Synchro reports are provided in Appendix F.

The analysis results in Table 7 indicate that all site accesses are projected to operate acceptably. Delays and queues are projected to increase slightly at the other study intersections with the addition of development site traffic. During the PM peak hour, delays are projected to increase to LOS F conditions for the southbound left-turn movement at $56^{\text {th }}$ Street \& Metcalf Avenue. The v/c ratio is projected to increase to 0.79 . The $95^{\text {th }}$ percentile queue length for the southbound left-turn movement is also projected to increase. The actual queue length would likely be longer than the $95^{\text {th }}$ percentile length from the Synchro analysis shown in Table 7. This is because the existing queues were observed to be as long as 250 feet in length.

TABLE 7: EXISTING + DEVELOPMENT PEAK HOUR CONDITIONS

	Intersection	Control	Approach	Operational Analysis Results					
				AM Peak Hour			PM Peak Hour		
				Delay (sec/veh)	LOS	95\% Queue	$\begin{gathered} \text { Delay } \\ \text { (sec/veh) } \end{gathered}$	LOS	$\begin{gathered} 95 \% \\ \text { Queue } \end{gathered}$
1	56 th Street \& Metcalf Avenue	Side Street Stop	EB	20.8	C	< 50'	19.1	C	< 50^{\prime}
			WB	19.6	C	< 50'	32.5	D	63^{\prime}
			NBL	18.2	C	< $50{ }^{\prime}$	17.2	C	< 50^{\prime}
			SBL	29.3	D	70^{\prime}	74.5	F	135'
2	$56^{\text {th }}$ Street \& Foxridge Drive ${ }^{1}$	Three-Way Stop	WB	2.8	A	55^{\prime}	3.9	A	79^{\prime}
			NB	7.0	A	< 50'	3.6	A	< 50'
			SB	3.0	A	67	3.5	A	71^{\prime}
3	58 ${ }^{\text {th }}$ Street \& Metcalf Avenue	Side Street Yield	WB	32.7	D	98'	141.4	F	285'
4	58 ${ }^{\text {th }}$ Street \& Foxridge Drive	Side Street Stop	EBL	7.7	A	< $50{ }^{\prime}$	7.8	A	< 50'
			SB	10.6	B	< 50'	11.0	B	$<50^{\prime}$
5	Johnson Drive \& Broadmoor Street	Signalized	EBL	12.8	B	50^{\prime}	15.1	B	68^{\prime}
			EB T/R	16.5	B	$123{ }^{\prime}$	21.5	C	230'
			WBL	13.5	B	< 50'	16.1	B	< 50^{\prime}
			WB T/R	17.2	B	80^{\prime}	20.5	C	170
			NBL	17.0	B	< $50{ }^{\prime}$	20.9	C	88^{\prime}
			NB T/R	20.3	C	< 50'	24.8	C	115'
			SBL	17.1	B	< $50{ }^{\prime}$	22.0	C	< 50'
			SBT	19.3	B	< $50{ }^{\prime}$	25.5	C	55^{\prime}
			SBR	23.1	C	63^{\prime}	31.0	C	123 '
			Overall	17.0	B	--	21.7	C	--
6	 Access A	Side Street Stop	WBL	7.6	A	< 50'	7.7	A	< $50{ }^{\prime}$
			NB	10.0	B	< 50'	10.4	B	< 50'
7	Broadmoor Street \& Access B	Side Street Stop	EB	9.7	A	$<50^{\prime}$	9.6	A	$<50{ }^{\prime}$
			NBL	7.6	A	< $50{ }^{\prime}$	7.6	A	$<50^{\prime}$
8	Foxridge Drive \& Access C	$\begin{gathered} \hline \text { Side Street } \\ \text { Stop } \\ \hline \end{gathered}$	WB	8.6	A	< 50'	8.7	A	< 50'

${ }^{1}$ SimTraffic results provided because HCM will not model 3-way stop control
Table 8 provides a summary of the capacity analysis at the $56^{\text {th }}$ Street \& Metcalf Avenue study intersection with the mitigations previously identified. The Synchro reports are provided in Appendix F.

TABLE 8: EXISTING + DEVELOPMENT MITIGATED PEAK HOUR CONDITIONS

	Intersection	Control	Approach	Operational Analysis Results					
				AM Peak Hour			PM Peak Hour		
				$\begin{gathered} \text { Delay } \\ \text { (sec/veh) } \end{gathered}$	LOS	95\% Queue	$\begin{gathered} \text { Delay } \\ \text { (sec/veh) } \end{gathered}$	LOS	$\begin{gathered} 95 \% \\ \text { Queue } \end{gathered}$
1	 Metcalf Avenue	Side Street Stop	EB	20.8	C	< 50'	19.1	C	< 50'
			WB	0.0	A	$0{ }^{\prime}$	0.0	A	$0{ }^{\prime}$
			NBL	18.2	C	< 50'	17.2	C	< 50'
			SBL	29.3	D	70'	74.5	F	135'

As shown in the previous scenario, the mitigations will greatly benefit the westbound right-turn since it becomes a free-flow movement. The southbound left-turn is projected to operate at LOS F with the mitigations. Given the low level of service projected, conditions at this intersection should be monitored on a regular basis. With the mitigation of lengthening the southbound left-turn lane to 650 feet, there will be ample storage to contain long queues within the lane.

7.5 HORIZON YEAR (2042) LEVEL OF SERVICE ANALYSIS

Capacity analysis was performed for Horizon Year (2042) traffic conditions at the study intersections to determine how the study area is expected to operate in the horizon year and where the network may need improvements in the future. The analysis was performed for weekday AM and PM peak hours and is based on the traffic volumes shown on Exhibit 9. The lane configurations and traffic controls are the same as the previous scenario, which are shown on Exhibit 8. This analysis includes the mitigations previously identified.

Table 9 provides a summary of the capacity analysis at the study intersections. The Synchro reports are provided in Appendix F.

TABLE 9: HORIZON YEAR (2042) PEAK HOUR CONDITIONS

	Intersection	Control	Approach	Operational Analysis Results					
				AM Peak Hour			PM Peak Hour		
				$\begin{gathered} \text { Delay } \\ \text { (sec/veh) } \end{gathered}$	LOS	95\% Queue	Delay (sec/veh)	LOS	95\% Queue
1	56 ${ }^{\text {th }}$ Street \& Metcalf Avenue	Side Street Stop	EB	23.7	C	< 50'	21.7	C	< 50'
			WB	0.0	A	0	0.0	A	0^{\prime}
			NBL	21.3	C	< $50{ }^{\prime}$	20.1	C	< $50{ }^{\prime}$
			SBL	45.3	E	$108{ }^{\prime}$	157.7	F	205'
2	$56^{\text {th }}$ Street \& Foxridge Drive ${ }^{1}$	Three-Way Stop	WB	3.2	A	53^{\prime}	4.7	A	83^{\prime}
			NB	0.5	A	< $50{ }^{\prime}$	4.6	A	< $50{ }^{\prime}$
			SB	3.9	A	77^{\prime}	4.6	A	83'
3	$58^{\text {th }}$ Street \& Metcalf Avenue	Side Street Stop	WB	49.9	E	145'	> 200	F	420'
4	$58^{\text {th }}$ Street \& Foxridge Drive	Side Street Stop	EBL	7.7	A	< 50'	7.9	A	< 50'
			SB	10.9	B	< 50'	11.4	B	< $50{ }^{\prime}$
5	Johnson Drive \& Broadmoor Street	Signalized	EBL	13.0	B	58^{\prime}	16.2	B	83^{\prime}
			EB T/R	17.1	B	$143{ }^{\prime}$	23.5	C	$275{ }^{\prime}$
			WBL	13.8	B	< 50'	17.6	B	< $50{ }^{\prime}$
			WB T/R	17.8	B	95^{\prime}	22.1	C	$200{ }^{\prime}$
			NBL	17.7	B	< 50'	22.1	C	$108{ }^{\prime}$
			NB T/R	21.3	C	< 50'	26.4	C	$138{ }^{\prime}$
			SBL	17.8	B	< $50{ }^{\prime}$	23.7	C	< $50{ }^{\prime}$
			SBT	20.1	C	< $50{ }^{\prime}$	27.4	C	65'
			SBR	24.3	C	73^{\prime}	33.7	C	145'
			Overall	17.6	B	--	23.4	C	--
6	56 ${ }^{\text {th }}$ Street $\&$ Access A	Side Street Stop	WBL	7.7	A	< 50 '	7.7	A	< 50 '
			NB	10.2	B	< 50'	10.6	B	< 50'
7	Broadmoor Street \& Access B	Side Street Stop	EB	9.9	A	< 50'	9.7	A	< 50'
			NBL	7.7	A	< 50'	7.6	A	< 50'
8	Foxridge Drive \& Access C	Side Street Stop	WB	8.7	A	< 50'	8.7	A	< 50'

${ }^{1}$ SimTraffic results provided because HCM will not model 3-way stop control
The analysis results indicate that the lower LOS continue to be projected at the $56^{\text {th }}$ Street \& Metcalf Avenue intersection as well as the $58^{\text {th }}$ Street \& Metcalf Avenue intersection. Additionally, the southbound left-turn volume is projected to exceed its capacity, with a volume to capacity ratio of 1.07 . It is unusual for a leftturn movement from a major street to operate with this level of delay. Long-term improvements for the Metcalf Avenue corridor should be evaluated, including at the Metcalf Avenue study intersections.

8.0 CONCLUSIONS AND RECOMMENDATIONS

A traffic impact study for the Foxridge Mission development has been prepared by Kimley-Horn. The proposed development site is located at the southeast corner of the $56^{\text {th }}$ Street \& Foxridge Drive intersection in Mission, Kansas. The purpose of this study was to assess the impact of the proposed development on the surrounding transportation system.

The following provides a summary of the analysis. Intersection capacity analysis was performed at the study intersections for the following scenarios:

- Existing Year (2022)
- Existing plus Proposed Development
- Horizon Year (2042)

Counts were collected in February 2022 to serve as the baseline for analysis. Two movements at the study intersections were found to currently be operating at lower levels of service (LOS). The westbound rightturn movement at $58^{\text {th }}$ Street \& Metcalf Avenue currently operates at LOS F during the peak hour. The southbound left-turn movement at $56^{\text {th }}$ Street \& Metcalf Avenue is currently operating at LOS E during the PM peak hour with queues of up to 250 feet in length.

A review of conditions determined that the existing geometry at the $56^{\text {th }}$ Street \& Metcalf Avenue intersection does not meet KDOT standards. Based on the deficiencies observed and the results of the crash analysis, the following mitigations are identified to improve safety and operations at $56^{\text {th }}$ Street \& Metcalf Avenue.

- Lengthen the southbound left-turn lane to provide a total length of 650 feet plus a 180 -foot straight line taper to accommodate deceleration and storage for 250 -foot queues.
- Lengthen the northbound right-turn lane to provide a total length of 385 feet plus a 180 -foot straight line taper.
- Construct a 565 -foot acceleration lane with a 300 -foot straight line taper on northbound Metcalf Avenue for the westbound right-turn movement to enter the highway as a free-flow movement.
- Reconfigure the east leg of the intersection including the raised channelizing island to better accommodate turning movements.

The southbound left-turn movement at $56^{\text {th }}$ Street and Metcalf Avenue will not operate at an acceptable level of service without a change in the form of intersection control. Warrant analysis found that existing traffic volumes satisfy the Four-Hour signal warrant. Partial signalization of the southbound left-turn and northbound through movements would provide operational and safety benefits for the southbound left-turn movement.

Potential improvements at the $56^{\text {th }}$ Street \& Metcalf Avenue intersection were discussed at a meeting with KDOT staff. KDOT staff does not support a traffic signal installation at this intersection. KDOT staff cited concerns about safety because of the speeds of traffic on Metcalf Avenue and the close proximity of the Foxridge Drive intersection. Since the intersection is KDOT's jurisdiction, a traffic signal will not be evaluated as a potential mitigation.

The proposed development is projected to generate 1,418 daily trips, 123 trips in the AM peak hour, and 120 trips in the PM peak hour. The site trips were added to the street network for the Existing plus Development analysis, and all site accesses are projected to operate acceptably. Delays and queues are
projected to increase slightly at the other study intersections with the addition of development site traffic. However, during the PM peak hour, delays are projected to increase to LOS F conditions for the southbound left-turn movement at $56^{\text {th }}$ Street $\&$ Metcalf Avenue. Given the low level of service projected, conditions at this intersection should be monitored on a regular basis.

In the Horizon Year (2042) scenario, the existing traffic volumes were grown at a rate of 0.5% per year, and the proposed site trips were included. The capacity analysis results were similar to the Existing plus Development conditions scenario, with increased delays for the controlled movements at the Metcalf Avenue study intersections. Long-term improvements for the Metcalf Avenue corridor should be evaluated, including at the Metcalf Avenue study intersections.

APPENDIX

Appendix A: EXHIBITS

Appendix B: TRAFFIC COUNT DATA
Appendix C: SITE PLAN
Appendix D: ITE TRIP GENERATION
Appendix E: DELAY STUDY
Appendix F: SYNCHRO REPORTS
Appendix G: TRAFFIC SIGNAL WARRANT ANALYSIS

Appendix A: Exhibits

Kimley") Horn

EXHIBIT 2
EXISTING YEAR (2022) PEAK HOUR TRAFFIC VOLUMES

Kimley») Horn

EXHIBIT 5 SITE TRIP DISTRIBUTION

Kimley») Horn

EXHIBIT 7
EXISTING PLUS PROPOSED DEVELOPMENT PEAK HOUR TRAFFIC VOLUMES

Kimley») Horn

EXHIBIT 8
EXISTING PLUS PROPOSED DEVELOPMENT GEOMETRY AND INTERSECTION CONTROL

Kimley») Horn
EXHIBIT 9
HORIZON YEAR (2042)
PEAK HOUR TRAFFIC VOLUMES

Appendix B: Traffic Count Data

Tue Feb 1, 2022
Full Length (7 AM-9 AM, 4 PM-6 PM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918022, Location: 39.027161, -94.66781

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg Direction	56th Eastbound			56th Westbound			Metcalf Northbound					Metcalf Southbound					
Time	L T	R U	App	L T	R U	App	L	T	R	U	App	L	T	R	U	App	Int
2022-02-01 7:00AM	0 0	20	2	00	110	11	2	254	8	0	264	15	258	0	1	274	551
7:15AM	0	40	4	0	140	14	2	270	4	0	276	22	374	1	0	397	691
7:30AM	0	40	4	0	180	18	2	331	6	1	340	25	488	2	0	515	877
7:45AM	0	20	2	0	170	17	2	382	13	0	397	43	534	2	0	579	995
Hourly Total	0	120	12	0	$60 \quad 0$	60	8	1237	31	1	1277	105	1654	5	1	1765	3114
8:00AM	0	20	2	0	30	3	2	313	11	1	327	35	362	5	0	402	734
8:15AM	0	20	2	0	130	13	1	327	13	0	341	20	354	1	0	375	731
8:30AM	0	20	2	0	90	9	2	255	5	1	263	30	317	2	0	349	623
8:45AM	0	10	1	0	130	13	4	233	15	0	252	18	323	1	0	342	608
Hourly Total	0	70	7	0	380	38	9	1128	44	2	1183	103	1356	9	0	1468	2696
4:00PM	0	30	3	0	80	8	10	396	13	1	420	29	329	5	0	363	794
4:15PM	0	00	0	0	210	21	5	429	17	0	451	26	419	8	0	453	925
4:30PM	0	30	3	0	210	21	6	414	14	2	436	29	365	2	0	396	856
4:45PM	0	50	5	0	120	12	12	409	14	1	436	28	442	8	1	479	932
Hourly Total	0	110	11	0	620	62	33	1648	58	4	1743	112	1555	23	1	1691	3507
5:00PM	0	40	4	0	370	37	7	487	22	0	516	29	448	4	0	481	1038
5:15PM	0	40	4	0	310	31	7	462	22	0	491	20	411	3	0	434	960
5:30PM	0	50	5	0	160	16	6	448	27	0	481	29	362	6	0	397	899
5:45PM	0	50	5	0	130	13	8	404	27	1	440	19	330	3	0	352	810
Hourly Total	0 0	180	18	0	970	97	28	1801	98	1	1928	97	1551	16	0	1664	3707
Total	0	480	48	$0 \quad 0$	2570	257	78	5814	231	8	6131	417	6116	53	2	6588	13024
\% Approach	0\% 0\%	100\% 0\%	-	0\% 0\%	100\% 0\%	-	1.3\%	94.8\%	3.8\%	0.1\%	-	6.3\%	92.8\%	0.8\%	0\%	-	-
\% Total	0\% 0\%	0.4\% 0\%	0.4\%	0\% 0\%	2.0\% 0\%	2.0\%	0.6\%	44.6\%	1.8\%	0.1\%	47.1\%	3.2\%	47.0\%	0.4\%	0\%	50.6\%	-
Lights	0	470	47	$0 \quad 0$	2490	249	75	5752	225	8	6060	410	6023	48	2	6483	12839
\% Lights	0\% 0\%	97.9\% 0\% 9	97.9\%	0\% 0\%	96.9\% 0\%	96.9\%	96.2\%	98.9\%	97.4\%	100\%	98.8\%	98.3\%	98.5\%	90.6\%	100\%	98.4\%	98.6\%
Articulated Trucks	0	$0 \quad 0$	0	0	$0 \quad 0$	0	0	13	0	0	13	1	15	0	0	16	29
\% Articulated Trucks	0\% 0\%	0\% 0\%	0\%	0\% 0\%	0\% 0\%	0\%	0\%	0.2\%	0\%	0\%	0.2\%	0.2\%	0.2\%	0\%	0\%	0.2\%	0.2\%
Buses and Single-Unit Trucks	0	10	1	$0 \quad 0$	$8 \quad 0$	8	3	49	6	0	58	6	78	5	0	89	156
\% Buses and Single-Unit Trucks	0\% 0\%	2.1\% 0\%	2.1\%	0\% 0\%	3.1\% 0\%	3.1\%	3.8\%	0.8\%	2.6\%	0\%	0.9\%	1.4\%	1.3\%	9.4\%	0\%	1.4\%	1.2\%

${ }^{*}$ L: Left, R: Right, T: Thru, U: U-Turn
[N$]$ Metcalf
Total: 12661
In: $6588 \quad$ Out: 6073

56th \& Metcalf - TMC
Tue Feb 1, 2022
AM Peak (7:30 AM - 8:30 AM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918022, Location: 39.027161, -94.66781

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg Direction	56th Eastbound			56th Westbound			Metcalf Northbound					Metcalf Southbound				
Time	L T	R U	App	L T	R U	App	L	T	R	U	App	L	T	R U	App	Int
2022-02-01 7:30AM	0	40	4	0 0	180	18	2	331	6	1	340	25	488	20	515	877
7:45AM	0	20	2	0	170	17	2	382	13	0	397	43	534	20	579	995
8:00AM	0	20	2	0 0	30	3	2	313	11	1	327	35	362	50	402	734
8:15AM	0	20	2	0	130	13	1	327	13	0	341	20	354	10	375	731
Total	0	$10 \quad 0$	10	$0 \quad 0$	510	51	7	1353	43	2	1405	123	1738	$10 \quad 0$	1871	3337
\% Approach	0\% 0\%	100\% 0\%	-	0\% 0\%	100\% 0\%	-	0.5\%	96.3\%	3.1\%	0.1\%	-	6.6\%	92.9\%	0.5\% 0\%		
\% Total	0\% 0\%	0.3\% 0\%	0.3\%	0\% 0\%	1.5\% 0\%	1.5\%	0.2\%	40.5\%	1.3\%	0.1\%	42.1\%	3.7\%	52.1\%	0.3\% 0\%	56.1\%	
PHF	- -	0.625	0.625	- -	0.708	0.708	0.875	0.885	0.827	0.500	0.885	0.715	0.814	0.500	0.808	0.838
Lights	$0 \quad 0$	$9 \quad 0$	9	$0 \quad 0$	450	45	7	1336	42	2	1387	120	1697	$7 \quad 0$	1824	3265
\% Lights	0\% 0\%	90.0\% 0\%	90.0\%	0\% 0\%	88.2\% 0\% 8	88.2\%	100\%	98.7\%	97.7\%	100\%	98.7\%	97.6\%	97.6\%	70.0\% 0\%	97.5\%	97.8\%
Articulated Trucks	0	$0 \quad 0$	0	$0 \quad 0$	$0 \quad 0$	0	0	2	0	0	2	1	6	0	7	9
\% Articulated Trucks	0\% 0\%	0\% 0\%	0\%	0\% 0\%	0\% 0\%	0\%	0\%	0.1\%	0\%	0\%	0.1\%	0.8\%	0.3\%	0\% 0\%	0.4\%	0.3\%
Buses and Single-Unit Trucks	0	10	1	$0 \quad 0$	60	6	0	15	1	0	16	2	35	30	40	63
\% Buses and Single-Unit Trucks	0\% 0\%	10.0\% 0\%	10.0\%	0\% 0\%	11.8\% 0\%	11.8\%	0\%	1.1\%	2.3\%	0\%	1.1\%	1.6\%	2.0\%	30.0\% 0\%	2.1\%	1.9\%

*L: Left, R: Right, T: Thru, U: U-Turn

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918022, Location: 39.027161, -94.66781

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US
[N$]$ Metcalf
Total: 3275
In: $1871 \quad$ Out: 1404

Out: 1750
In: 1405
Total: 3155
[S] Metcalf

56th \& Metcalf - TMC
Tue Feb 1, 2022
PM Peak (4:45 PM - 5:45 PM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918022, Location: 39.027161, -94.66781

C(I) IAEMAL HAMLITON
Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg Direction	56th Eastbound	56th Westbound		Metcalf Northbound				Metcalf Southbound					
Time	L \quad T \quad R \quad U App	L T	R U App	L T	R	U	App	L	T	R	U	App	Int
2022-02-01 4:45PM	$\begin{array}{lllll}0 & 0 & 5 & 0 & \mathbf{5}\end{array}$	0	12 0 12	12409	14	1	436	28	442	8	1	479	932
5:00PM	$\begin{array}{lllll}0 & 0 & 4 & 0 & 4\end{array}$	0	370037	7487	22	0	516	29	448	4	0	481	1038
5:15PM	$\begin{array}{lllll}0 & 0 & 4 & 0 & \mathbf{4}\end{array}$	0	310031	7462	22	0	491	20	411	3	0	434	960
5:30PM	$\begin{array}{lllll}0 & 0 & 5 & 0 & 5\end{array}$	0	$16 \quad 0 \quad 16$	6448	27	0	481	29	362	6	0	397	899
Total	$\begin{array}{rrrrr}0 & 0 & 18 & 0 & \mathbf{1 8}\end{array}$	$0 \quad 0$	$\begin{array}{lll}96 & 0 & 96\end{array}$	321806	85	1	1924	106	1663	21	1	1791	3829
\% Approach	0\% 0\% 100\% 0\%	0\% 0\%	100\% 0\%	1.7\% 93.9\%	4.4\%	0.1\%	-	5.9\%	92.9\%	1.2\%	0.1\%	-	-
\% Total	0\% 0\% 0.5\% 0\% 0.5\%	0\% 0\%	2.5\% 0\% 2.5\%	0.8\% 47.2\%	2.2\%		50.2\%	2.8\%	43.4\%	0.5\%	0\%	46.8\%	-
PHF	-0.900 -0.900	- -	$0.649-\mathbf{0 . 6 4 9}$	0.6670 .927	0.787	0.250	0.932	0.914	0.928	0.656	0.250	0.931	0.922
Lights	$\begin{array}{lllll}0 & 0 & 18 & 0 & \mathbf{1 8}\end{array}$	$0 \quad 0$	$\begin{array}{rrr}95 & 0 & 95\end{array}$	311792	84	1	1908	106	1650	20	1	1777	3798
\% Lights	0\% 0\% 100\% 0\% 100\%	0\% 0\%	99.0\% 0\% 99.0\%	96.9\% 99.2\%	98.8\%	100\%	99.2\%	100\%	99.2\%	95.2\%	100\%	99.2\%	99.2\%
Articulated Trucks	$\begin{array}{lllll}0 & 0 & 0 & 0 & \mathbf{0}\end{array}$	$0 \quad 0$	$0 \quad 0 \quad 0$	05	0	0	5	0	5	0	0	5	10
\% Articulated Trucks	0\% 0\% $0 \% 0 \% \quad \mathbf{0 \%}$	0\% 0\%	0\% 0\% 0%	0\% 0.3\%	0\%	0\%	0.3\%	0\%	0.3\%	0\%	0\%	0.3\%	0.3\%
Buses and Single-Unit Trucks	$\begin{array}{lllll}0 & 0 & 0 & 0 & \mathbf{0}\end{array}$	0	$1 \begin{array}{lll}1 & 0 & 1\end{array}$	$1 \quad 9$	1	0	11	0	8	1	0	9	21
\% Buses and Single-Unit Trucks	0\% 0\% $\quad 0 \% 0 \%$ 0\%	0\% 0\%	1.0\% 0\% 1.0\%	3.1\% 0.5\%	1.2\%	0\%	0.6\%	0\%	0.5\%	4.8\%	0\%	0.5\%	0.5\%

* L: Left, R: Right, T: Thru, U: U-Turn

PM Peak (4:45 PM - 5:45 PM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918022, Location: 39.027161, -94.66781

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US
[N$]$ Metcalf
Total: 3694
In: 1791 Out: 1903

Out: 1682
In: 1924
Total: 3606
[S] Metcalf

56th \& Foxridge - TMC
Tue Feb 1, 2022
Full Length (7 AM-9 AM, 4 PM-6 PM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918023, Location: 39.027129, -94.667374 Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg Direction	Access Eastbound				56th Westbound				Frontage Northbound				Frontage Southbound				
Time	L T	R	U	App	L	T	R U	App	L	T	R U	App	L	T	R U	App	Int
2022-02-01 7:00AM	118	4	0	23	0	0	30	3	0	0	0 0	0	11	5	110	27	53
7:15AM	$11 \quad 11$	3	1	26	0	1	30	4	0	1	0	1	28	16	120	56	87
7:30AM	$17 \quad 10$	4	0	31	0	3	50	8	1	1	0	2	33	14	140	61	102
7:45AM	$23 \quad 22$	10	1	56	0	5	110	16	0	0	0	0	24	12	110	47	119
Hourly Total	6251	21	2	136	0	9	220	31	1	2	0	3	96	47	480	191	361
8:00AM	$20 \quad 20$	8	0	48	0	0	140	14	0	1	0	1	15	9	20	26	89
8:15AM	1217	3	0	32	1	2	130	16	0	0	0	0	15	8	110	34	82
8:30AM	623	6	0	35	0	3	120	15	0	2	0	2	17	8	60	31	83
8:45AM	$15 \quad 14$	3	0	32	0	2	$9 \quad 0$	11	1	2	0	3	15	10	10 0	35	81
Hourly Total	$53 \quad 74$	20	0	147	1	7	480	56	1	5	$0 \quad 0$	6	62	35	290	126	335
4:00PM	2215	4	0	41	0	3	$30 \quad 0$	33	0	5	0	5	28	6	50	39	118
4:15PM	$25 \quad 17$	1	0	43	0	10	350	45	1	8	0	9	21	9	10 0	40	137
4:30PM	$28 \quad 11$	4	0	43	0	5	380	43	2	7	0	9	19	8	140	41	136
4:45PM	$28 \quad 11$	1	2	42	0	5	330	38	0	3	$0 \quad 0$	3	19	13	50	37	120
Hourly Total	10354	10	2	169	0	23	1360	159	3	23	0	26	87	36	340	157	511
5:00PM	$34 \quad 12$	4	0	50	0	17	320	49	4	3	0	7	33	8	160	57	163
5:15PM	$27 \quad 8$	7	0	42	0	12	270	39	3	4	0	7	23	6	160	45	133
5:30PM	3516	3	1	55	1	4	$34 \quad 0$	39	2	9	0	11	23	10	80	41	146
5:45PM	3211	4	0	47	0	6	260	32	2	9	0	11	24	9	50	38	128
Hourly Total	12847	18	1	194	1	39	1190	159	11	25	0	36	103	33	450	181	570
Total	346226	69	5	646	2	78	3250	405	16	55	$0 \quad 0$	71	348	151	1560	655	1777
\% Approach	53.6\% 35.0\%	10.7\%	0.8\%	-	0.5\%	19.3\%	80.2\% 0\%	-	22.5\%	77.5\% 0	0\% 0\%	-	53.1\%	23.1\%	23.8\% 0\%	-	-
\% Total	19.5\% 12.7\%	3.9\%	0.3\%	36.4\%	0.1\%	4.4\%	18.3\% 0\%	22.8\%	0.9\%	3.1\% 0	0\% 0\%	4.0\%	19.6\%	8.5\%	8.8\% 0\%	36.9\%	-
Lights	$334 \quad 223$	69	5	631	2	78	3220	402	16	54	$0 \quad 0$	70	338	147	1480	633	1736
\% Lights	96.5\% 98.7\%	100\%	100\% 9	97.7\%	100\%	100\%	99.1\% 0\% 9	99.3\%	100\%	98.2\% 0	0\% 0\%	98.6\%	97.1\%	97.4\%	94.9\% 0\% 9	96.6\%	97.7\%
Articulated Trucks	$0 \quad 1$	0	0	1	0	0	$0 \quad 0$	0	0	0	$0 \quad 0$	0	0	0	$0 \quad 0$	0	1
\% Articulated Trucks	0\% 0.4\%	0\%	0\%	0.2\%	0\%	0\%	0\% 0\%	0\%	0\%	0\% 0	0\% 0\%	0\%	0\%	0\%	0\% 0\%	0\%	0.1\%
Buses and Single-Unit Trucks	$12 \quad 2$	0	0	14	0	0	30	3	0	1	$0 \quad 0$	1	10	4	80	22	40
\% Buses and Single-Unit Trucks	3.5\% 0.9\%	0\%	0\%	2.2\%	0\%	0\%	0.9\% 0\%	0.7\%	0\%	1.8\% 0	0\% 0\%	1.4\%	2.9\%	2.6\%	5.1\% 0\%	3.4\%	2.3\%

[^0]Full Length (7 AM-9 AM, 4 PM-6 PM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918023, Location: 39.027129, -94.667374
Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US
[N] Frontage
Total: 1381
In: 655
Out: 726

Out: 222 In: 71
Total: 293
[S] Frontage

Tue Feb 1, 2022
AM Peak (7:15 AM - 8:15 AM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918023, Location: 39.027129, -94.667374

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg Direction	Access Eastbound				56th Westbound					Frontage Northbound				Frontage Southbound					Int
Time	L T	R	U	App	L	T		U	App	L	T	R U		L	T	R	U	App	
2022-02-01 7:15AM	$11 \quad 11$	3	1	26	0	1	3	0	4	0	1	00	1	28	16	12	0	56	87
7:30AM	$17 \quad 10$	4	0	31	0	3	5	0	8	1	1	0	2	33	14	14	0	61	102
7:45AM	$23 \quad 22$	10	1	56	0	5	11	0	16	0	0	0	0	24	12	11	0	47	119
8:00AM	$20 \quad 20$	8	0	48	0	0	14	0	14	0	1	0	1	15	9	2	0	26	89
Total	7163	25	2	161	0	9	33	0	42	1	3	$0 \quad 0$	4	100	51	39	0	190	397
\% Approach	44.1\% 39.1\%	15.5\%	1.2\%	-	0\%	21.4\%	78.6\% 0		-	25.0\%	75.0\%	0\% 0\%	-	52.6\%	26.8\%	20.5\%		-	-
\% Total	17.9\% 15.9\%	6.3\% 0	0.5\% 4	40.6\%	0\%	2.3\%	8.3\% 0\%	0\% 1	10.6\%	0.3\%	0.8\%	0\% 0\%	1.0\%	25.2\%	12.8\%	9.8\%	0\%	47.9\%	-
PHF	$\begin{array}{ll}0.772 & 0.716\end{array}$	0.6250	0.500	0.719	-	0.450	0.589	- 0	0.656	0.250	0.750	- -	0.500	0.758	0.797	0.696	-	0.779	0.834
Lights	$66 \quad 62$	25	2	155	0	9	31	0	40	1	3	$0 \quad 0$	4	98	50	35	0	183	382
\% Lights	93.0\% 98.4\%	100\% 1	100\% 9	96.3\%	0\%	100\%	93.9\% 0	0\% 9	95.2\%	100\%	100\%	0\% 0\%	100\%	98.0\%	98.0\%	89.7\%	0\% 9	96.3\%	96.2\%
Articulated Trucks	$0 \quad 0$	0	0	0	0	0	0	0	0	0	0	$0 \quad 0$	0	0	0	0	0	0	0
\% Articulated Trucks	0\% 0\%	0\%	0\%	0\%	0\%	0\%	0\% 0\%		0\%	0\%	0\%	0\% 0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
Buses and Single-Unit Trucks	51	0	0	6	0	0	2	0	2	0	0	$0 \quad 0$	0	2	1	4	0	7	15
\% Buses and Single-Unit Trucks	7.0\% 1.6\%	0\%	0\%	3.7\%	0\%	0\%	6.1\% 0	0\%	4.8\%	0\%	0\%	0\% 0\%	0\%	2.0\%	2.0\%	10.3\%	0\%	3.7\%	3.8\%

${ }^{*}$ L: Left, R: Right, T: Thru, U: U-Turn

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US
[N] Frontage
Total: 297
In: $190 \quad$ Out: 107

Out: 76 In: 4
Total: 80
[S] Frontage

56th \& Foxridge - TMC

Tue Feb 1, 2022
PM Peak (5 PM - 6 PM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918023, Location: 39.027129, -94.667374

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg Direction	Access Eastbound					56th Westbound				Frontage Northbound				Frontage Southbound					
Time	L	T	R	U	App	L	T	R U	App	L	T	R U	App	L	T	R	U	App	Int
2022-02-01 5:00PM	34	12	4	0	50	0	17	320	49	4	3	0	7	33	8	16	0	57	163
5:15PM	27	8	7	0	42	0	12	270	39	3	4	0	7	23	6	16	0	45	133
5:30PM	35	16	3	1	55	1	4	340	39	2	9	0	11	23	10	8	0	41	146
5:45PM	32	11	4	0	47	0	6	260	32	2	9	0	11	24	9	5	0	38	128
Total	128	47	18	1	194	1	39	1190	159	11	25	$0 \quad 0$	36	103	33	45	0	181	570
\% Approach	66.0\%	24.2\%	9.3\%	0.5\%	-	0.6\%	24.5\%	74.8\% 0\%	-	30.6\%	69.4\% 0	0\% 0\%	-	56.9\%	18.2\%	24.9\% 0		-	
\% Total	22.5\%	8.2\%	3.2\%	0.2\%	34.0\%	0.2\%	6.8\%	20.9\% 0\%	27.9\%	1.9\%	4.4\% 0	0\% 0\%	6.3\%	18.1\%	5.8\%	7.9\% 0\%		31.8\%	
PHF	0.914	0.7340	0.6430	0.250	0.882	0.250	0.574	0.875	0.811	0.688	0.694	- -	0.818	0.780	0.825	0.703	-	0.794	0.874
Lights	128	47	18	1	194	1	39	1190	159	11	25	$0 \quad 0$	36	103	33	45	0	181	570
\% Lights	100\%	100\% 1	100\%	100\%	100\%	100\%	100\%	100\% 0\%	100\%	100\%	100\% 0	0\% 0\%	100\%	100\%	100\%	100\% 0		100\%	100\%
Articulated Trucks	0	0	0	0	0	0	0	$0 \quad 0$	0	0	0	$0 \quad 0$	0	0	0	0	0	0	0
\% Articulated Trucks	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\% 0\%	0\%	0\%	0\% 0	0\% 0\%	0\%	0\%	0\%	0\% 0		0\%	0\%
Buses and Single-Unit Trucks	0	0	0	0	0	0	0	$0 \quad 0$	0	0	0	$0 \quad 0$	0	0	0	0	0	0	0
\% Buses and Single-Unit Trucks	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\% 0\%	0\%	0\%	0\% 0	0\% 0\%	0\%	0\%	0\%	0\% 0		0\%	0\%

[^1]PM Peak (5 PM - 6 PM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918023, Location: 39.027129, -94.667374

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US
[N] Frontage
Total: 453
In: 181
Out: 272

Out: 52 In: 36
Total: 88
[S] Frontage

Tue Feb 1, 2022
Full Length (7 AM-9 AM, 4 PM-6 PM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918024, Location: 39.02396, -94.667314 Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg Direction	US 69 Eastbound		58th Westbound					US 69 Northbound					Foxridge Southbound					
Time	L \quad T \quad R \quad U	App	L	T	R		App	L	T	R	U	App	L	T	R	U	App	Int
2022-02-01 7:00AM	$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$	0	0	30	0	0	30	0	3	10	0	13	8	0	0	0	8	51
7:15AM	$0 \begin{array}{llll}0 & 0 & 0\end{array}$	0	0	31	2	0	33	0	1	15	0	16	17	0	0	0	17	66
7:30AM	$0 \begin{array}{llll}0 & 0 & 0\end{array}$	0	0	59	1	0	60	0	2	12	0	14	11	0	0	0	11	85
7:45AM	$0 \begin{array}{llll}0 & 0 & 0\end{array}$	0	0	35	2	0	37	0	3	16	0	19	21	0	0	0	21	77
Hourly Total	0	0	0	155	5	0	160	0	9	53	0	62	57	0	0	0	57	279
8:00AM	0	0	0	36	3	0	39	0	1	9	0	10	11	0	2	0	13	62
8:15AM	$0 \begin{array}{llll}0 & 0 & 0\end{array}$	0	0	37	1	0	38	0	3	7	0	10	12	0	0	0	12	60
8:30AM	$0 \begin{array}{llll}0 & 0 & 0\end{array}$	0	0	28	5	0	33	0	1	9	0	10	10	0	1	0	11	54
8:45AM	0	0	0	28	3	0	31	0	3	13	0	16	13	0	0	0	13	60
Hourly Total	0	0	0	129	12	0	141	0	8	38	0	46	46	0	3	0	49	236
4:00PM	$0 \begin{array}{llll}0 & 0 & 0\end{array}$	0	0	52	6	0	58	0	2	9	0	11	13	0	2	0	15	84
4:15PM	$0 \begin{array}{llll}0 & 0 & 0\end{array}$	0	0	53	6	0	59	0	0	6	0	6	9	0	1	0	10	75
4:30PM	0	0	0	49	8	0	57	0	0	9	0	9	13	0	0	0	13	79
4:45PM	0	0	0	55	3	0	58	0	0	8	0	8	20	0	0	0	20	86
Hourly Total	0	0	0	209	23	0	232	0	2	32	0	34	55	0	3	0	58	324
5:00PM	$0 \begin{array}{llll}0 & 0 & 0\end{array}$	0	0	65	4	0	69	0	0	10	0	10	12	0	0	0	12	91
5:15PM	0	0	0	54	5	0	59	0	2	9	0	11	16	0	0	0	16	86
5:30PM	0	0	0	52	10	0	62	0	0	11	0	11	18	0	0	0	18	91
5:45PM	$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$	0	0	43	6	0	49	0	1	6	0	7	13	0	1	0	14	70
Hourly Total	0	0	0	214	25	0	239	0	3	36	0	39	59	0	1	0	60	338
Total	$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$	0	0	707	65	0	772	0	22	159	0	181	217	0	7	0	224	1177
\% Approach	0\% 0\% 0\% 0\%	-	0\%	91.6\%	8.4\%	0\%	-	0\%	12.2\%	87.8\%	0\%	-	96.9\%	0\%	3.1\%	0\%	-	-
\% Total	0\% 0\% 0\% 0\%	0\%	0\%	60.1\%	5.5\%	0\%	65.6\%	0\%	1.9\%	13.5\%	0\%	15.4\%	18.4\%	0\%	0.6\%	0\%	19.0\%	-
Lights	$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$	0	0	706	63	0	769	0	22	159	0	181	212	0	7	0	219	1169
\% Lights	0\% 0\% 0\% 0\%	-	0\%	99.9\%	96.9\%	0\%	99.6\%	0\%	100\%	100\%	0\%	100\%	97.7\%	0\%	100\%	0\%	97.8\%	99.3\%
Articulated Trucks	$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1
\% Articulated Trucks	0\% 0\% 0\% 0\%	-	0\%	0.1\%	0\%	0\%	0.1\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0.1\%
Buses and Single-Unit Trucks	$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$	0	0	0	2	0	2	0	0	0	0	0	5	0	0	0	5	7
\% Buses and Single-Unit Trucks	0\% 0\% 0\% 0\%	-	0\%	0\%	3.1\%	0\%	0.3\%	0\%	0\%	0\%	0\%	0\%	2.3\%	0\%	0\%	0\%	2.2\%	0.6\%

* L: Left, R: Right, T: Thru, U: U-Turn

Full Length (7 AM-9 AM, 4 PM-6 PM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918024, Location: 39.02396, -94.667314

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US
[N] Foxridge
Total: 311
In: 224 Out: 87
$\stackrel{\underset{\sim}{N}}{N}$

Out: $0 \quad$ In: 181
Total: 181
[S] US 69

Tue Feb 1, 2022
AM Peak (7:15 AM - 8:15 AM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918024, Location: 39.02396, -94.667314

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

[^2]All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918024, Location: 39.02396, -94.667314

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US
[N] Foxridge
Total: 77
In: 62 Out: 15
~ 8

Out: $0 \quad$ In: 59
Total: 59
[S] US 69

58th \& Foxridge - TMC

Tue Feb 1, 2022
PM Peak (4:45 PM - 5:45 PM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918024, Location: 39.02396, -94.667314

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

[^3]PM Peak (4:45 PM - 5:45 PM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918024, Location: 39.02396, -94.667314

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US
[N] Foxridge
Total: 90
In: 66 Out: 24
\odot

Out: $0 \quad$ In: 40
Total: 40
[S] US 69

Johnson Drive and Broadmoor - TMC
Tue Feb 1, 2022
Full Length (7 AM-9 AM, 4 PM-6 PM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918025, Location: 39.022226, -94.665648

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

[^4]Full Length (7 AM-9 AM, 4 PM-6 PM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918025, Location: 39.022226, -94.665648

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Total: 1568
In: 717 Out: 851
"o

Total: 5063 Out: 2226
In: 2837 Out: 2226
1877

504

Out: 946 In: 783
Total: 1729
[S] Broadmoor

Tue Feb 1, 2022
AM Peak (7:15 AM - 8:15 AM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918025, Location: 39.022226, -94.665648

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg Direction	Johnson Eastbound		Johnson Westbound		Broadmoor Northbound				Broadmoor Southbound					
Time	L T	R U App	L T	R U App	L	T		U App	L	T	R		App	Int
2022-02-01 7:15AM	$20 \quad 74$	22 0 116	286	$7{ }^{7} \mathbf{0} 595$	7	3	6	$0 \quad 16$	8	5	25	0	38	265
7:30AM	48132	23 0 203	10119	8 0 137	13	2	13	028	8	10	29	0	47	415
7:45AM	34112	$27 \quad 0 \quad 173$	652	16 0 74	3	4	10	$0 \quad 17$	9	16	16	0	41	305
8:00AM	3099	3100160	$13 \quad 74$	110098	13	5	15	$0 \quad 33$	6	6	12	0	24	315
Total	132417	$\begin{array}{lll}103 & 0 & 652\end{array}$	31331	$42 \quad 0 \quad 404$	36	14	44	$0 \quad 94$	31	37	82	0	150	1300
\% Approach	20.2\% 64.0\%	15.8\% 0\%	7.7\% 81.9\%	10.4\% 0\%	38.3\%	14.9\%	46.8\% 0\%	\%	20.7\%	24.7\%	54.7\% 0	0\%	-	-
\% Total	10.2\% 32.1\%	7.9\% 0\% 50.2\%	2.4\% 25.5\%	3.2\% 0\% 31.1\%	2.8\%	1.1\%	3.4\% 0\%	\% 7.2\%	2.4\%	2.8\%	6.3\% 0	\% 1	11.5\%	-
PHF	$0.688 \quad 0.790$	0.831-0.803	0.5960 .695	$0.656-0.737$	0.692	0.700	0.733	- 0.712	0.861	0.578	0.707	-	0.798	0.783
Lights	130411	$\begin{array}{lll}102 & 0 & \mathbf{6 4 3}\end{array}$	31323	$42 \quad 0 \quad 396$	35	14	44	$0 \quad 93$	31	36	79	0	146	1278
\% Lights	98.5\% 98.6\%	99.0\% 0\% 98.6\%	100\% 97.6\%	100\% 0\% 98.0\%	97.2\%	100\%	100\% 0\%	\% 98.9\%	100\%	97.3\%	96.3\% 0	\% 9	97.3\%	98.3\%
Articulated Trucks	$0 \quad 1$	$\begin{array}{lll}0 & 0 & \mathbf{1}\end{array}$	$0 \quad 2$	$\begin{array}{lll}0 & 0 & 2\end{array}$	0	0	0	$0 \quad 0$	0	0	0	0	0	3
\% Articulated Trucks	0\% 0.2\%	0\% 0\% 0.2\%	0\% 0.6\%	0\% 0\% 0.5\%	0\%	0\%	0\% 0\%	\%\%	0\%	0\%	0\% 0	\%	0\%	0.2\%
Buses and Single-Unit Trucks	25	$\begin{array}{lll}1 & 0 & 8\end{array}$	$0 \quad 6$	$\begin{array}{lll}0 & 0 & 6\end{array}$	1	0	0	$0 \quad 1$	0	1	3	0	4	19
\% Buses and Single-Unit Trucks	1.5\% 1.2\%	1.0\% 0\% 1.2\%	0\% 1.8\%	0\% 0\% 1.5\%	2.8\%	0\%	0\% 0\%	\% 1.1\%	0\%	2.7\%	3.7\% 0		2.7\%	1.5\%

[^5]Tue Feb 1, 2022
AM Peak (7:15 AM - 8:15 AM)
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918025, Location: 39.022226, -94.665648

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US
[N] Broadmoor
Total: 338
In: 150 Out: 188
N N $\mathrm{m} \underset{\mathrm{m}}{\mathrm{m}}$

Out: 171 In: 94
Total: 265
[S] Broadmoor

Tue Feb 1, 2022
PM Peak (4:45 PM - 5:45 PM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918025, Location: 39.022226, -94.665648

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg Direction	Johnson Eastbound		Johnson Westbound				Broadmoor Northbound					Broadmoor Southbound					
Time	L T	R U App	L	T	R	U App	L	T		U	App	L	T	R		App	Int
2022-02-01 4:45PM	34165	45	21	124	10	$0 \quad 155$	36	19	26	0	81	13	12	36	0	61	541
5:00PM	34149	46	18	129	11	$0 \quad 158$	33	21	20	0	74	14	25	44	0	83	544
5:15PM	32153	38 0 223	27	114	12	$0 \quad 153$	32	20	23	0	75	7	22	27	0	56	507
5:30PM	39125	$\begin{array}{lll}37 & 0 & 201\end{array}$	17	130	15	$0 \quad 162$	47	21	17	0	85	15	19	30	0	64	512
Total	139592	$\begin{array}{lll}166 & 0 & 897\end{array}$	83	497	48	$0 \quad 628$	148	81	86	0	315	49	78	137	0	264	2104
\% Approach	15.5\% 66.0\% 1	18.5\% 0\%	13.2\% 7	79.1\%	7.6\% 0\%	0\%	47.0\%	25.7\%	27.3\%	\%	-	18.6\%	29.5\%	51.9\%	\%		
\% Total	6.6\% 28.1\%	7.9\% 0\% 42.6\%	3.9\%	23.6\%	2.3\% 0\%	0\% 29.8\%	7.0\%	3.8\%	4.1\% 0	\% 15	15.0\%	2.3\%	3.7\%	6.5\%	0\% 1	12.5\%	
PHF	0.8910 .897	0.902-0.919	0.769	0.956	0.800	- 0.969	0.787	0.964	0.827	- 0	0.926	0.817	0.780	0.778	- 0	0.795	0.967
Lights	139589	166	83	492	48	$0 \quad 623$	147	80	86	0	313	49	78	137	0	264	2094
\% Lights	100\% 99.5\%	100\% 0\% 99.7\%	100\%	99.0\% 1	100\% 0\%	0\% 99.2\%	99.3\% 9	98.8\%	100\% 0	\% 99	99.4\%	100\%	100\%	100\%	0\%	100\%	99.5\%
Articulated Trucks	0	$\begin{array}{lll}0 & 0 & \mathbf{0}\end{array}$	0	0	0	$0 \quad \mathbf{0}$	0	0	0	0	0	0	0	0	0	0	0
\% Articulated Trucks	0\% 0\%	0\% 0\% $\quad \mathbf{0 \%}$	0\%	0\%	0\% 0\%	0\% 0\%	0\%	0\%	0\% 0	\%	0\%	0\%	0\%	0\% 0	0\%	0\%	0\%
Buses and Single-Unit Trucks	03	$\begin{array}{lll}0 & 0 & 3\end{array}$	0	5	0	$0 \quad 5$	1	1	0	0	2	0	0	0	0	0	10
\% Buses and Single-Unit Trucks	0\% 0.5\%	0\% 0\% 0.3\%	0\%	1.0\%	0\% 0\%	0\% 0.8\%	0.7\%	1.2\%	0\% 0		0.6\%	0\%	0\%	0\% 0		0\%	0.5\%

[^6]PM Peak (4:45 PM - 5:45 PM) - Overall Peak Hour
All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)
All Movements
ID: 918025, Location: 39.022226, -94.665648

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US
[N] Broadmoor
Total: 532
In: 264 Out: 268
$\stackrel{\stackrel{\sim}{n}}{\sim} \underset{\sim}{\circ}$

Out: 327 In: 315
Total: 642
[S] Broadmoor

Appendix C: Site Plan

1. CLUBHOUSE - SEE ARCHITECTURE
2. SCULPTURE
3. LANDSCAPE HEDGE
4. 8' TRAIL
5. SIGN WALL
6. ENTRY PLAZA

DOG RUN
8. RETAINING WALL
9. TRASH
10. EXISTING STREET LIGHT

11. GARAGE ENTRY
12. UNIT PATIOS
13. SPECIAL PAVING
14. BENCH, TYP.
15. PLANTER, TYP.
16. ON-STREET PARKING, TYP
17. BIKE RACKS
18. PET WASTE STATION
19. CROSSWALK TO PARK
20. LOADING
21. AMENITY COURTYARD

Appendix D: ITE Trip Generation

Land Use: 221
 Multifamily Housing (Mid-Rise)

Description

Mid-rise multifamily housing includes apartments and condominiums located in a building that has between four and 10 floors of living space. Access to individual dwelling units is through an outside building entrance, a lobby, elevator, and a set of hallways.

Multifamily housing (low-rise) (Land Use 220), multifamily housing (high-rise) (Land Use 222), offcampus student apartment (mid-rise) (Land Use 226), and mid-rise residential with ground-floor commercial (Land Use 231) are related land uses.

Land Use Subcategory

Data are presented for two subcategories for this land use: (1) not close to rail transit and (2) close to rail transit. A site is considered close to rail transit if the walking distance between the residential site entrance and the closest rail transit station entrance is $1 / 2$ mile or less.

Additional Data

For the six sites for which both the number of residents and the number of occupied dwelling units were available, there were an average of 2.5 residents per occupied dwelling unit.

For the five sites for which the numbers of both total dwelling units and occupied dwelling units were available, an average of 96 percent of the total dwelling units were occupied.

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/trip-and-parking-generation/).

It is expected that the number of bedrooms and number of residents are likely correlated to the trips generated by a residential site. To assist in future analysis, trip generation studies of all multifamily housing should attempt to obtain information on occupancy rate and on the mix of residential unit sizes (i.e., number of units by number of bedrooms at the site complex).

The sites were surveyed in the 1990 s, the 2000s, the 2010s, and the 2020s in Alberta (CAN), California, District of Columbia, Florida, Georgia, Illinois, Maryland, Massachusetts, Minnesota, Montana, New Jersey, New York, Ontario (CAN), Oregon, Utah, and Virginia.

Source Numbers

$168,188,204,305,306,321,818,857,862,866,901,904,910,949,951,959,963,964,966,967$, $969,970,1004,1014,1022,1023,1025,1031,1032,1035,1047,1056,1057,1058,1071,1076$

Multifamily Housing (Mid-Rise) Not Close to Rail Transit (221)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 11
Avg. Num. of Dwelling Units: 201
Directional Distribution: 50% entering, 50% exiting
Range of Rates
$3.76-5.40$

Data Plot and Equation

Multifamily Housing (Mid-Rise) Not Close to Rail Transit (221)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 30
Avg. Num. of Dwelling Units: 173
Directional Distribution: 23\% entering, 77% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.37	$0.15-0.53$	0.09

Data Plot and Equation

Multifamily Housing (Mid-Rise) Not Close to Rail Transit (221)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban

Number of Studies: 31
Avg. Num. of Dwelling Units: 169
Directional Distribution: 61\% entering, 39\% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.39	$0.19-0.57$	0.08

Data Plot and Equation

Appendix E: Delay Study

Intersection Control Delay Sudy 56th Street \& M etcalf Avenue
Southbound Left-Turn
Tuesday, February 1, 2022
4:45-5:45 PM
Kimley-Horn

Intersection:
M ovement:
Data Date:
Time Period:
Analyst:

$$
\begin{aligned}
& \text { \# of Vehicles in Queue }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ن் }
\end{aligned}
$$

Appendix F: Synchro Reports

 Stage 2

Approach	EB	WB	NB	SB
HCM Control Delay, s	20.8	17.8	0.1	1.8
HCM LOS	C	C		

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	281	-	-240	339	301	-	-
HCM Lane V/C Ratio	0.029	-	-0.048	0.173	0.47	-	-
HCM Control Delay (s)	18.2	-	-	20.8	17.8	27.1	-
HCM Lane LOS	C	-	-	C	C	D	-
HCM 95th \%tile Q(veh)	0.1	-	-	0.1	0.6	2.4	-

2: Foxridge Drive \& 56th Street Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	All
Stop Del/Veh (s)	0.4	0.4	0.5		2.9	2.4	3.0	0.5	3.1	3.2	2.5	1.8

Intersection: 2: Foxridge Drive \& 56th Street

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (ft)	11	43	30	75
Average Queue (ft)	0	26	3	42
95th Queue (ft)	6	44	18	67
Link Distance (ft)	17	508	1099	432
Upstream Blk Time (\%)	0			
Queuing Penalty (veh)	0			
Storage Bay Dist (ft)				
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Intersection						

Intersection							
Int Delay, s/veh 2.4							
Movement E	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		\uparrow	F		*		
Traffic Vol, veh/h	9	44	167	7	55	2	
Future Vol, veh/h	9	44	167	7	55	2	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control F	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, \#	\# -	0	0	-	0	-	
Grade, \%	-	0	0	-	0	-	
Peak Hour Factor	87	87	87	87	87	87	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mvmt Flow	10	51	192	8	63	2	

Major/Minor M	Major1		Major2		Minor2	
Conflicting Flow All	200	0	0	0	267	196
Stage 1	-	-	- -	-	196	-
Stage 2	-	-	- -	-	71	-
Critical Hdwy	4.12	-	- -	-	6.42	6.22
Critical Hdwy Stg 1	-	-	- -	-	5.42	-
Critical Hdwy Stg 2	-	-	- -	-	5.42	-
Follow-up Hdwy	2.218	-	- -	-	3.518	3.318
Pot Cap-1 Maneuver	1372	-	- -	-	722	845
Stage 1	-	-	- -	-	837	-
Stage 2	-	-	- -	-	952	-
Platoon blocked, \%		-	- -	-		
Mov Cap-1 Maneuver	1372	-	- -	-	717	845
Mov Cap-2 Maneuver	-	-	- -	-	717	-
Stage 1	-	-	- -	-	831	-
Stage 2	-	-	- -	-	952	-
Approach	EB		WB		SB	
HCM Control Delay, s	1.3		0		10.5	
HCM LOS					B	
Minor Lane/Major Mvmt		EBL	EBT	WBT WBR SBLn1		
Capacity (veh/h)		1372	2	-	-	721
HCM Lane V/C Ratio		0.008	-	-	-	0.091
HCM Control Delay (s)		7.6	0	-	-	10.5
HCM Lane LOS		A	A	-	-	B
HCM 95th \%tile Q(veh)		0	O	-	-	0.3

	$\stackrel{ }{*}$	\rightarrow	7	\downarrow			4	4	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{4}$	瑯		${ }^{*}$	性		\％	\uparrow		${ }^{4}$	\uparrow	「
Traffic Volume（veh／h）	136	436	100	41	293	51	41	17	50	31	38	66
Future Volume（veh／h）	136	436	100	41	293	51	41	17	50	31	38	66
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate，veh／h	156	501	115	47	337	59	47	20	57	36	44	76
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh，\％	2	2	2	2	2	2	2	2	2	2	2	2
Cap，veh／h	464	810	185	347	706	122	345	48	136	316	192	162
Arrive On Green	0.10	0.28	0.28	0.05	0.23	0.23	0.05	0.11	0.11	0.04	0.10	0.10
Sat Flow，veh／h	1781	2873	656	1781	3028	525	1781	429	1222	1781	1870	1585
Grp Volume（v），veh／h	156	309	307	47	196	200	47	0	77	36	44	76
Grp Sat Flow（ s ，veh／h／ln	1781	1777	1752	1781	1777	1776	1781	0	1650	1781	1870	1585
Q Serve（g＿s），s	3.0	7.0	7.1	0.9	4.4	4.5	1.1	0.0	2.0	0.8	1.0	2.1
Cycle Q Clear（g＿c），s	3.0	7.0	7.1	0.9	4.4	4.5	1.1	0.0	2.0	0.8	1.0	2.1
Prop In Lane	1.00		0.37	1.00		0.30	1.00		0.74	1.00		1.00
Lane Grp Cap（c），veh／h	464	501	494	347	414	414	345	0	184	316	192	162
VIC Ratio（X）	0.34	0.62	0.62	0.14	0.47	0.48	0.14	0.00	0.42	0.11	0.23	0.47
Avail Cap（c＿a），veh／h	828	1265	1247	528	997	996	527	0	961	591	1170	992
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	11.6	14.5	14.5	12.5	15.3	15.4	17.2	0.0	19.2	17.4	19.1	19.6
Incr Delay（d2），s／veh	0.4	1.2	1.3	0.2	0.8	0.9	0.2	0.0	1.5	0.2	0.6	2.1
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（95\％），veh／ln	1.8	4.6	4.6	0.6	3.0	3.0	0.7	0.0	1.4	0.6	0.8	1.4
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	12.1	15.7	15.8	12.7	16.2	16.2	17.3	0.0	20.7	17.6	19.7	21.7
LnGrp LOS	B	B	B	B	B	B	B	A	C	B	B	C
Approach Vol，veh／h		772			443			124			156	
Approach Delay，s／veh		15.0			15.8			19.4			20.2	
Approach LOS		B			B			B			C	
Timer－Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration（ $G+Y+R \mathrm{C})$ ，s	7.9	11.2	8.3	19.1	8.3	10.8	10.5	16.8				
Change Period（ $Y+R \mathrm{c}$ ）， s	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0				
Max Green Setting（Gmax），s	9.0	27.0	7.0	33.0	7.0	29.0	14.0	26.0				
Max Q Clear Time（ $\left.\mathrm{g}_{-} \mathrm{c}+11\right)$ ，s	2.8	4.0	2.9	9.1	3.1	4.1	5.0	6.5				
Green Ext Time（p＿c），s	0.0	0.4	0.0	4.0	0.0	0.4	0.3	2.2				
Intersection Summary												
HCM 6th Ctrl Delay			16.2									
HCM 6th LOS			B									

Intersection														

 Stage 2

Approach	EB	WB	NB	SB
HCM Control Delay, s	18.6	28.1	0.3	2.8
HCM LOS	C	D		

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	342	-	-	283	256	194	-

2: Foxridge Drive \& 56th Street Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	All
Stop Del/Veh (s)	0.3	0.3	0.3	1.5	4.0	3.2	3.7	3.7	3.5	3.3	3.0	2.4

Intersection: 2: Foxridge Drive \& 56th Street

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (ft)	8	84	36	90
Average Queue (ft)	0	42	19	44
95th Queue (ft)	4	68	44	72
Link Distance (ft)	17	508	1099	432
Upstream Blk Time (\%)	0			
Queuing Penalty (veh)	0			
Storage Bay Dist (ft)				
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Intersection						
Int Delay, s/veh 6.5						
Movement W	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		「	性			44
Traffic Vol, veh/h	0	226	1923	40	0	1790
Future Vol, veh/h	0	226	1923	40	0	1790
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Stor	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Yield	-	Free	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	240	2046	43	0	1904

Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	-	1023	0	-	-		
\quad Stage 1	-	-	-	-	-		
\quad Stage 2	-	-	-	-	-		

Approach	WB	NB	SB
HCM Control Delay, s 112.6	0	0	
HCM LOS	F		

Minor Lane/Major Mvmt	NBTWBLn1	SBT
Capacity (veh/h)	-233	-
HCM Lane V/C Ratio	-1.032	-
HCM Control Delay (s)	-112.6	-
HCM Lane LOS	-	F
HCM 95th \%tile Q(veh)	-	10
H	-	

Notes

$\sim:$ Volume exceeds capacity $\quad \$$: Delay exceeds $300 \mathrm{~s} \quad+$: Computation Not Defined \quad : All major volume in platoon

Major/Minor M	Major1		Major2		Minor2	
Conflicting Flow All	263	0	0	0	296	252
Stage 1	-	-	- -	-	252	-
Stage 2	-	-	- -	-	44	-
Critical Hdwy	4.12	-	- -	-	6.42	6.22
Critical Hdwy Stg 1	-	-	- -	-	5.42	-
Critical Hdwy Stg 2	-	-	- -	-	5.42	-
Follow-up Hdwy	2.218	-	- -	-	3.518	3.318
Pot Cap-1 Maneuver	1301	-	- -	-	695	787
Stage 1	-	-	- -	-	790	-
Stage 2	-	-	- -	-	978	-
Platoon blocked, \%		-	- -	-		
Mov Cap-1 Maneuver	1301	-	- -	-	694	787
Mov Cap-2 Maneuver	-	-	- -	-	694	-
Stage 1	-	-	- -	-	788	-
Stage 2	-	-	- -	-	978	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.4		0		10.8	
HCM LOS					B	
Minor Lane/Major Mvmt		EBL	EBT	WBT WBR SBLn1		
Capacity (veh/h)		1301	-	-	-	694
HCM Lane V/C Ratio		0.002	2	-	-	0.101
HCM Control Delay (s)		7.8	- 0	-	-	10.8
HCM Lane LOS		A	A	-	-	B
HCM 95th \%tile Q(veh)		0	O	-	-	0.3

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	中 ${ }^{\text {a }}$		${ }^{7}$	䖝		${ }^{7}$	$\hat{\beta}$		${ }^{7}$	4	「
Traffic Volume（veh／h）	139	592	166	83	497	48	148	81	86	49	78	137
Future Volume（veh／h）	139	592	166	83	497	48	148	81	86	49	78	137
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate，veh／h	148	630	177	88	529	51	157	86	91	52	83	146
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh，\％	2	2	2	2	2	2	2	2	2	2	2	2
Cap，veh／h	401	876	246	305	977	94	402	155	164	311	247	210
Arrive On Green	0.08	0.32	0.32	0.06	0.30	0.30	0.10	0.19	0.19	0.05	0.13	0.13
Sat Flow，veh／h	1781	2740	769	1781	3276	315	1781	832	880	1781	1870	1585
Grp Volume（v），veh／h	148	408	399	88	286	294	157	0	177	52	83	146
Grp Sat Flow（s），veh／h／ln	1781	1777	1732	1781	1777	1814	1781	0	1712	1781	1870	1585
Q Serve（g＿s），s	3.5	12.7	12.7	2.1	8.4	8.5	4.6	0.0	5.9	1.5	2.5	5.5
Cycle Q Clear（g＿c），s	3.5	12.7	12.7	2.1	8.4	8.5	4.6	0.0	5.9	1.5	2.5	5.5
Prop In Lane	1.00		0.44	1.00		0.17	1.00		0.51	1.00		1.00
Lane Grp Cap（c），veh／h	401	568	554	305	530	541	402	0	319	311	247	210
V／C Ratio（X）	0.37	0.72	0.72	0.29	0.54	0.54	0.39	0.00	0.56	0.17	0.34	0.70
Avail Cap（c＿a），veh／h	593	995	970	393	853	871	535	0	740	426	688	583
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	13.7	18.8	18.8	14.6	18.3	18.4	20.2	0.0	23.1	21.7	24.6	25.9
Incr Delay（d2），s／veh	0.6	1.7	1.8	0.5	0.9	0.8	0.6	0.0	1.5	0.3	0.8	4.1
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（95\％），veh／ln	2.4	8.7	8.5	1.4	5.9	6.1	3.3	0.0	4.2	1.1	2.0	4.0
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	14.3	20.5	20.6	15.1	19.2	19.2	20.8	0.0	24.6	22.0	25.4	30.0
LnGrp LOS	B	C	C	B	B	B	C	A	C	C	C	C
Approach Vol，veh／h		955			668			334			281	
Approach Delay，s／veh		19.6			18.7			22.8			27.2	
Approach LOS		B			B			C			C	

Timer－Assigned Phs	1	2	3	4	5	6	7	8
Phs Duration（G＋Y＋Rc），s	9.0	17.6	9.9	26.0	12.3	14.3	11.3	24.6
Change Period（Y＋Rc），s	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Max Green Setting（Gmax），s	7.0	27.0	7.0	35.0	11.0	23.0	12.0	30.0
Max Q Clear Time（g＿c＋I1），s	3.5	7.9	4.1	14.7	6.6	7.5	5.5	10.5
Green Ext Time（p＿C），s	0.0	0.9	0.0	5.3	0.1	0.8	0.2	3.5

Intersection Summary

HCM 6th Ctrl Delay 20.7
HCM 6th LOS

 Stage 2

Approach	EB	WB	NB	SB
HCM Control Delay, s	20.8	0	0.1	1.8
HCM LOS	C	A		

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	281	-	-240	-	301	-	-
HCM Lane V/C Ratio	0.029	-	-0.048	-	0.47	-	-
HCM Control Delay (s)	18.2	-	-20.8	0	27.1	-	-
HCM Lane LOS	C	-	-	C	A	D	-
HCM 95th \%tile Q(veh)	0.1	-	-	0.1	-	2.4	-

Intersection												
Int Delay，s／veh	1.6											
Movement E	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			「			「	${ }^{1}$	44	「	${ }^{1}$	中 ${ }^{\text {a }}$	
Traffic Vol，veh／h	0	0	18	0	0	96	32	1806	85	106	1663	21
Future Vol，veh／h	0	0	18	0	0	96	32	1806	85	106	1663	21
Conflicting Peds，\＃／hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control Stop	Free	Free	Free	Free	Free	Free						
RT Channelized	－	－	None	－	－	Free	－	－	None	－	－	None
Storage Length	－	－	0	－	－	0	300	－	385	650	－	－
Veh in Median Storage，\＃	－	0	－	－	0	－	－	0	－	－	0	－
Grade，\％	－	0	－	－	0	－	－	0	－	－	0	－
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles，\％	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	19	0	0	102	34	1921	90	113	1769	22

 Stage 2

Approach	EB	WB	NB	SB
HCM Control Delay，s	18.6	0	0.3	2.8
HCM LOS	C	A		

Minor Lane／Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity（veh／h）	342	-	-283	-	194	-	-
HCM Lane V／C Ratio	0.1	-	-0.068	-0.581	-	-	
HCM Control Delay（s）	16.7	-	-18.6	0	46.5	-	-
HCM Lane LOS	C	-	-	C	A	E	-
HCM 95th \％tile Q（veh）	0.3	-	-	0.2	-	3.2	-
（ven							

Intersection		1.7											

 Stage 2

Approach	EB	WB	NB	SB
HCM Control Delay, s	20.8	19.6	0.1	2.1
HCM LOS	C	C		

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	281	-	-240	338	297	-	-
HCM Lane V/C Ratio	0.029	-	-0.048	0.272	0.515	-	-
HCM Control Delay (s)	18.2	-	-	20.8	19.6	29.3	-
HCM Lane LOS	C	-	-	C	C	D	-
HCM 95th \%tile Q(veh)	0.1	-	-	0.1	1.1	2.8	-

2: Foxridge Drive \& 56th Street Performance by lane

Lane	EB	WB	NB	SB	All
Movements Served	LTR	LTR	LTR	LTR	
Stop Del/Veh (s)	0.4	2.8	7.0	3.0	1.9

Intersection: 2: Foxridge Drive \& 56th Street

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (ft)	19	54	29	74
Average Queue (ft)	1	34	2	43
95th Queue (ft)	6	55	14	67
Link Distance (ft)	17	184	130	432
Upstream Blk Time (\%)	0			
Queuing Penalty (veh)	0			
Storage Bay Dist (ft)				
Storage Blk Time (\%)				
Queuing Penalty (veh)				


```
HCMLOS D
```

Minor Lane/Major Mvmt	NBTWBLn1	SBT
Capacity (veh/h)	-323	-
HCM Lane V/C Ratio	-0.619	-
HCM Control Delay (s)	-32.7	-
HCM Lane LOS	-	D
HCM 95th \%tile Q(veh)	-	-

Major/Minor M	Major1		Major2		Minor2	
Conflicting Flow All	206	0	- -	0	278	202
Stage 1	-	-	- -	-	202	-
Stage 2	-	-	- -	-	76	-
Critical Hdwy	4.12	-	- -	-	6.42	6.22
Critical Hdwy Stg 1	-	-	- -	-	5.42	-
Critical Hdwy Stg 2	-	-	- -	-	5.42	-
Follow-up Hdwy	2.218	-	- -	-	3.518	3.318
Pot Cap-1 Maneuver	1365	-	- -	-	712	839
Stage 1	-	-	- -	-	832	-
Stage 2	-	-	- -	-	947	-
Platoon blocked, \%		-	- -	-		
Mov Cap-1 Maneuver	1365	-	- -	-	706	839
Mov Cap-2 Maneuver	-	-	- -	-	706	-
Stage 1	-	-	- -	-	825	-
Stage 2	-	-	- -	-	947	-
Approach	EB		WB		SB	
HCM Control Delay, s	S 1.3		0		10.6	
HCM LOS					B	
Minor Lane/Major Mvmt		EBL	EBT	WBT WBR SBLn1		
Capacity (veh/h)		1365	5	-	-	710
HCM Lane V/C Ratio		0.008	-	-	-	0.096
HCM Control Delay (s)		7.7	0	-	-	10.6
HCM Lane LOS		A	A	-	-	B
HCM 95th \%tile Q(veh)		0	- -	-	-	0.3

	4	\rightarrow	7		4	\dagger		\dagger	\pm
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	160	616	47	399	47	78	46	48	125
v/c Ratio	0.26	0.36	0.10	0.29	0.14	0.28	0.13	0.18	0.29
Control Delay	10.1	15.6	10.1	18.9	17.3	15.2	17.1	27.2	1.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	10.1	15.6	10.1	18.9	17.3	15.2	17.1	27.2	1.7
Queue Length 50th (ft)	32	98	9	63	12	7	11	16	0
Queue Length 95th (ft)	66	153	25	111	35	43	34	46	0
Internal Link Dist (ft)		712		564		550		1548	
Turn Bay Length (ft)	170		170		100		275		190
Base Capacity (vph)	741	2274	492	1911	361	971	438	1122	1045
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.22	0.27	0.10	0.21	0.13	0.08	0.11	0.04	0.12

Intersection Summary

Intersection						
Int Delay, s/veh	1.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			\uparrow	Mr	
Traffic Vol, veh/h	159	13	3	61	25	14
Future Vol, veh/h	159	13	3	61	25	14
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	183	15	3	70	29	16

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		个			4
Traffic Vol, veh/h	2	2	3	0	0	70
Future Vol, veh/h	2	2	3	0	0	70
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	0	-	0	-	-	0
Grade, $\%$	0	-	0	-	-	0
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	2	2	3	0	0	80

Intersection														

 Stage 2

Approach	EB	WB	NB	SB
HCM Control Delay, s	19.1	32.5	0.3	5.4
HCM LOS	C	D		

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	329	-	-275	248	181	-	-
HCM Lane V/C Ratio	0.106	-	-0.071	0.487	0.793	-	-
HCM Control Delay (s)	17.2	-	-	19.1	32.5	74.5	-
HCM Lane LOS	C	-	-	C	D	F	-
HCM 95th \%tile Q(veh)	0.4	-	-	0.2	2.5	5.4	-

2: Foxridge Drive \& 56th Street Performance by lane

Lane	EB	WB	NB	SB	All
Movements Served	LTR	LTR	LTR	LTR	
Stop Del/Veh (s)	0.3	3.9	3.6	3.5	2.6

Intersection: 2: Foxridge Drive \& 56th Street

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (ft)	14	98	36	91
Average Queue (ft)	1	52	20	45
95th Queue (ft)	7	79	45	71
Link Distance (ft)	17	184	130	432
Upstream Blk Time (\%)	0			
Queuing Penalty (veh)	0			
Storage Bay Dist (ft)				
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Intersection						
Int Delay, s/veh 8.1						
Movement W	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		「	中 ${ }^{\text {b }}$			44
Traffic Vol, veh/h	0	228	1939	49	0	1790
Future Vol, veh/h	0	228	1939	49	0	1790
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Star	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Yield	-	Free	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	248	2108	53	0	1946

Major/Minor	Minor1		Major1	Major2	
Conflicting Flow All	-	1054	0	-	-
\quad Stage 1	-	-	-	-	-
\quad Stage 2	-	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, s 141.4	0	0	
HCM LOS	F		

Minor Lane/Major Mvmt	NBTWBLn1	SBT	
Capacity (veh/h)	-222	-	
HCM Lane V/C Ratio	-1.116	-	
HCM Control Delay (s)	-141.4	-	
HCM Lane LOS	-	F	-
HCM 95th \%tile Q(veh)	-11.4	-	
Notes			
\sim Volume exceeds capacity	$\$$: Delay exceeds 300s + +: Computation Not Defined	*: All major volume in platoon	

Intersection						
Int Delay, s/veh	2.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	F		Mr	
Traffic Vol, veh/h	4	45	228	22	67	0
Future Vol, veh/h	4	45	228	22	67	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, $\#$	-	0	0	-	0	-
Grade, $\%$	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	4	49	248	24	73	0

Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	272	0		0	317	260
Stage 1	-	-	- -	-	260	-
Stage 2	-	-	- -	-	57	-
Critical Hdwy	4.12	-	- -	-	6.42	6.22
Critical Hdwy Stg 1	-	-	- -	-	5.42	-
Critical Hdwy Stg 2	-	-	- -	-	5.42	-
Follow-up Hdwy	2.218	-	- -	-	3.518	3.318
Pot Cap-1 Maneuver	1291	-	- -	-	676	779
Stage 1	-	-	- -	-	783	-
Stage 2	-	-	- -	-	966	-
Platoon blocked, \%		-	- -	-		
Mov Cap-1 Maneuver	1291	-	- -	-	674	779
Mov Cap-2 Maneuver	-	-	- -	-	674	-
Stage 1	-	-	- -	-	781	-
Stage 2	-	-	- -	-	966	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.6		0		11	
HCM LOS					B	
Minor Lane/Major Mvmt		EBL	EBT	WBT WBR SBLn1		
Capacity (veh/h)		1291	,	-	-	674
HCM Lane V/C Ratio		0.003	-	-	-	0.108
HCM Control Delay (s)		7.8	0	-	-	11
HCM Lane LOS		A	A	-	-	B
HCM 95th \%tile Q(veh)		0	0	-	-	0.4

	4	\rightarrow	7		4	\dagger		\dagger	4
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	159	823	90	600	161	185	59	87	172
v/c Ratio	0.41	0.65	0.31	0.61	0.39	0.40	0.19	0.38	0.50
Control Delay	14.1	23.0	14.1	25.8	22.6	24.0	21.0	37.6	11.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	14.1	23.0	14.1	25.8	22.6	24.0	21.0	37.6	11.3
Queue Length 50th (ft)	39	168	21	123	54	58	19	38	0
Queue Length 95th (ft)	79	250	48	194	116	134	50	89	56
Internal Link Dist (ft)		712		564		550		1548	
Turn Bay Length (ft)	170		170		100		275		190
Base Capacity (vph)	448	1668	301	1446	421	671	318	590	618
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.35	0.49	0.30	0.41	0.38	0.28	0.19	0.15	0.28

Intersection Summary

Intersection						
Int Delay, s/veh	0.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			-	r	
Traffic Vol, veh/h	152	37	7	169	12	7
Future Vol, veh/h	152	37	7	169	12	7
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	165	40	8	184	13	8

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	205	0	385	185
Stage 1	-	-	-	-	185	-
Stage 2	-	-	-	-	200	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1366	-	618	857
Stage 1	-	-	-	-	847	-
Stage 2	-	-	-	-	834	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1366	-	614	857
Mov Cap-2 Maneuver	-	-	-	-	614	-
Stage 1	-	-	-	-	847	-
Stage 2	-	-	-	-	828	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.3		10.4	
HCM LOS					B	
Minor Lane/Major Mvmt		NBLn1 EBT EBR WBL WBT				
Capacity (veh/h)		686	-	-	1366	-
HCM Lane V/C Ratio		0.03	-	-	0.006	-
HCM Control Delay (s)		10.4	-	-	7.7	0
HCM Lane LOS		B	-	-	A	A
HCM 95th \%tile Q(veh)		0.1	-	-	0	-

Intersection						
Int Delay, s/veh	1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			\uparrow	\uparrow	
Traffic Vol, veh/h	4	22	18	172	152	7
Future Vol, veh/h	4	22	18	172	152	7
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	4	24	20	187	165	8

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		个			4
Traffic Vol, veh/h	1	1	28	0	0	55
Future Vol, veh/h	1	1	28	0	0	55
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	0	-	0	-	-	0
Grade, $\%$	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1	1	30	0	0	60

Intersection												
Int Delay，s／veh	1.3											
Movement E	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			「			「	${ }^{*}$	44	F	${ }^{1}$	中 ${ }^{\text {c }}$	
Traffic Vol，veh／h	0	0	10	0	0	80	7	1358	49	133	1738	10
Future Vol，veh／h	0	0	10	0	0	80	7	1358	49	133	1738	10
Conflicting Peds，\＃／hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control Stop	Free	Free	Free	Free	Free	Free						
RT Channelized	－	－	None	－	－	Free	－	－	None	－	－	None
Storage Length	－	－	0	－	－	0	300	－	385	650	－	－
Veh in Median Storage，\＃	－	0	－	－	0	－	－	0	－	－	0	－
Grade，\％	－	0	－	－	0	－	－	0	－	－	0	－
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87
Heavy Vehicles，\％	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	11	0	0	92	8	1561	56	153	1998	11

Platoon blocked，\％

Mov Cap－1 Maneuver	-	-	240	-	-	-	281	-	-	297	-	-
Mov Cap－2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-

Stage 2

Approach	EB	WB	NB	SB
HCM Control Delay，s	20.8	0	0.1	2.1
HCM LOS	C	A		

Minor Lane／Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity（veh／h）	281	-	-240	-297	-	-	
HCM Lane V／C Ratio	0.029	-	-0.048	-0.515	-	-	
HCM Control Delay（s）	18.2	-	-20.8	0	29.3	-	-
HCM Lane LOS	C	-	-	C	A	D	-
HCM 95th \％tile Q（veh）	0.1	-	-	0.1	-	2.8	-

Intersection														

 Stage 2

Approach	EB	WB	NB	SB
HCM Control Delay, s	19.1	0	0.3	5.4
HCM LOS	C	A		

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	329	-	-275	-	181	-	-
HCM Lane V/C Ratio	0.106	-	-0.071	-0.793	-	-	
HCM Control Delay (s)	17.2	-	-19.1	0	74.5	-	-
HCM Lane LOS	C	-	-	C	A	F	-
HCM 95th \%tile Q(veh)	0.4	-	-	0.2	-	-	

Platoon blocked, \%

Mov Cap-1 Maneuver	-	-	204	-	-	-	232	-	-	247	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-

Stage 2

Approach	EB	WB	NB	SB
HCM Control Delay, s	23.7	0	0.1	3.2
HCM LOS	C	A		

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	232	-	-204	-247	-	-	
HCM Lane V/C Ratio	0.05	-	-0.056	-0.675	-	-	
HCM Control Delay (s)	21.3	-	-23.7	0	45.3	-	-
HCM Lane LOS	C	-	-	C	A	E	-
HCM 95th \%tile Q(veh)	0.2	-	-	0.2	-	4.3	-

2: Foxridge Drive \& 56th Street Performance by lane

Lane	EB	WB	NB	SB	All
Movements Served	LTR	LTR	LTR	LTR	
Stop Del $/$ Veh (s)	0.2	3.2	0.5	3.9	2.2

Intersection: 2: Foxridge Drive \& 56th Street

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	LTR	LTR
Maximum Queue (ft)	36	60	12	101
Average Queue (ft)	2	32	1	45
95th Queue (ft)	15	53	9	77
Link Distance (ft)	17	184	130	432
Upstream Blk Time (\%)	0			
Queuing Penalty (veh)	0			
Storage Bay Dist (ft)				
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Intersection						
Int Delay, s/veh	2.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		$\mathbf{7}$	个 \mathbf{t}			4.
Traffic Vol, veh/h	0	190	1556	64	0	2065
Future Vol, veh/h	0	190	1556	64	0	2065
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Yield	-	Free	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	218	1789	74	0	2374

Major/Minor	Minor1	Major1	Major2

Conflicting Flow All	-	895	0	-	-	-
\quad Stage 1	-	-	-	-	-	-
\quad Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Fllow-up Hdwy	-	3.32	-	-	-	-
Pot Cap-1 Maneuver	0	284	-	0	0	-
\quad Stage 1	0	-	-	0	0	-
\quad Stage 2	0	-	-	0	0	-
Platoon blocked, \%		-			-	
Mov Cap-1 Maneuver	-	284	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
\quad Stage 1	-	-	-	-	-	-
\quad Stage 2	-	-	-	-	-	

Stage 2

Approach	WB	NB	SB
HCM Control Delay, s	49.9	0	0
HCM LOS	E		

Minor Lane/Major Mvmt	NBTWBLn1	SBT
Capacity (veh/h)	-284	-
HCM Lane V/C Ratio	-0.769	-
HCM Control Delay (s)	-49.9	-
HCM Lane LOS	-	E
HCM 95th \%ttile Q(veh)	-	-

Major/Minor \quad N	Major1		Major2		Minor2	
Conflicting Flow All	227	0	-	0	309	223
Stage 1	-	-	-	-	223	-
Stage 2	-	-	-		86	
Critical Hdwy	4.12	-	-		6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-		3.518	3.318
Pot Cap-1 Maneuver	1341	-	-	-	683	817
Stage 1	-	-	-		814	-
Stage 2	-	-	-		937	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1341		-	-	676	817
Mov Cap-2 Maneuver	-	-	-	-	676	-
Stage 1	-	-	-		806	-
Stage 2	-	-	-		937	-
Approach	EB		WB		SB	
HCM Control Delay, s	1.3		0		10.9	
HCM LOS					B	
Minor Lane/Major Mvmt		EBL	EBT WBT WBR SBLn1			
Capacity (veh/h)		1341	-	-	-	680
HCM Lane V/C Ratio		0.009	-	-	-	0.11
HCM Control Delay (s)		7.7	0	-	-	10.9
HCM Lane LOS		A	A	-	-	B
HCM 95th \%tile Q(veh)		0	-	-	-	0.4

	*	\rightarrow	4		4	4		\dagger	\pm
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	176	680	52	440	52	86	49	53	133
v/c Ratio	0.30	0.39	0.13	0.47	0.16	0.30	0.15	0.19	0.31
Control Delay	10.3	15.8	10.3	20.9	18.4	15.6	18.1	28.3	2.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	10.3	15.8	10.3	20.9	18.4	15.6	18.1	28.3	2.2
Queue Length 50th (ft)	36	114	10	73	14	8	13	19	0
Queue Length 95th (ft)	73	174	27	125	39	46	37	50	0
Internal Link Dist (ft)		712		564		550		1548	
Turn Bay Length (ft)	170		170		100		275		190
Base Capacity (vph)	702	2201	446	1823	348	932	418	1087	1019
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.25	0.31	0.12	0.24	0.15	0.09	0.12	0.05	0.13

Intersection Summary

	4	－	7	7		4	4	4	\％	1	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	中 ${ }^{\text {a }}$		${ }^{7}$	中 ${ }^{\text {a }}$		${ }^{7}$	\uparrow		${ }^{7}$	4	「
Traffic Volume（veh／h）	153	482	110	45	324	59	45	20	55	43	46	116
Future Volume（veh／h）	153	482	110	45	324	59	45	20	55	43	46	116
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate，veh／h	176	554	126	52	372	68	52	23	63	49	53	133
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh，\％	2	2	2	2	2	2	2	2	2	2	2	2
Cap，veh／h	456	848	192	329	718	130	359	59	161	341	244	207
Arrive On Green	0.11	0.29	0.29	0.05	0.24	0.24	0.05	0.13	0.13	0.05	0.13	0.13
Sat Flow，veh／h	1781	2878	652	1781	3005	544	1781	442	1211	1781	1870	1585
Grp Volume（v），veh／h	176	341	339	52	219	221	52	0	86	49	53	133
Grp Sat Flow（s），veh／h／ln	1781	1777	1753	1781	1777	1772	1781	0	1652	1781	1870	1585
Q Serve（g＿s），s	3.6	8.5	8.6	1.1	5.4	5.5	1.3	0.0	2.4	1.2	1.3	4.0
Cycle Q Clear（g＿c），s	3.6	8.5	8.6	1.1	5.4	5.5	1.3	0.0	2.4	1.2	1.3	4.0
Prop In Lane	1.00		0.37	1.00		0.31	1.00		0.73	1.00		1.00
Lane Grp Cap（c），veh／h	456	524	517	329	425	424	359	0	219	341	244	207
V／C Ratio（X）	0.39	0.65	0.66	0.16	0.51	0.52	0.14	0.00	0.39	0.14	0.22	0.64
Avail Cap（c＿a），veh／h	756	1154	1138	483	909	907	513	0	878	569	1067	904
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	12.4	15.6	15.7	13.5	16.8	16.8	17.5	0.0	20.2	17.6	19.8	21.0
Incr Delay（d2），s／veh	0.5	1.4	1.4	0.2	1.0	1.0	0.2	0.0	1.1	0.2	0.4	3.3
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（95\％），veh／In	2.3	5.7	5.7	0.7	3.7	3.8	0.9	0.0	1.7	0.8	1.0	2.8
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	13.0	17.0	17.1	13.8	17.7	17.8	17.7	0.0	21.3	17.8	20.2	24.3
LnGrp LOS	B	B	B	B	B	B	B	A	C	B	C	C
Approach Vol，veh／h		856			492			138			235	
Approach Delay，s／veh		16.2			17.4			20.0			22.0	
Approach LOS		B			B			B			C	
Timer－Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ），s	8.5	12.7	8.6	21.0	8.6	12.6	11.4	18.2				
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0				
Max Green Setting（Gmax），s	9.0	27.0	7.0	33.0	7.0	29.0	14.0	26.0				
Max Q Clear Time（g＿c＋l1），s	3.2	4.4	3.1	10.6	3.3	6.0	5.6	7.5				
Green Ext Time（p＿c），s	0.0	0.4	0.0	4.4	0.0	0.7	0.3	2.5				
Intersection Summary												
HCM 6th Ctrl Delay			17.6									
HCM 6th LOS			B									

Intersection						
Int Delay, s/veh	1.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			A	Mr	
Traffic Vol, veh/h	175	13	3	67	25	14
Future Vol, veh/h	175	13	3	67	25	14
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	201	15	3	77	29	16

Intersection						
Int Delay, s/veh	1.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			\uparrow	F	
Traffic Vol, veh/h	7	45	7	63	186	3
Future Vol, veh/h	7	45	7	63	186	3
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	8	52	8	72	214	3

Intersection													
Int Delay，s／veh	5.6												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations			$\stackrel{7}{ }$			F	${ }^{7}$	个4	「	\％	性		
Traffic Vol，veh／h	0	0	20	0	0	120	35	1997	111	141	1835	25	
Future Vol，veh／h	0	0	20	0	0	120	35	1997	111	141	1835	25	
Conflicting Peds，\＃／hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control S	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized		－	None	－	－	Free	－	－	None	－	－	None	
Storage Length		－	0	－	－	0	300	－	385	650	－	－	
Veh in Median Storage，\＃		0	－	－	0	－	－	0	－	－	0	－	
Grade，\％		0	－	－	0	－	－	0	－	－	0	－	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles，\％	2	2	2	2	2	2	2	2	2	2	2	2	
Mumt Flow	0	0	22	0	0	130	38	2171	121	153	1995	27	

Platoon blocked，\％

Mov Cap－1 Maneuver	-	-	237	-	-	-	277	-	$-\sim 143$	-	-
Mov Cap－2 Maneuver	-	-	-	-	-	-	-	-	-	-	-

Approach	EB	WB	NB	SB
HCM Control Delay，s	21.7	0	0.3	11.1
HCM LOS	C	A		

5: Johnson Drive \& Broadmoor Street

	4	\rightarrow	7		4	\dagger		\dagger	\checkmark
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	175	910	100	662	178	204	64	96	187
v/c Ratio	0.46	0.69	0.36	0.63	0.45	0.50	0.21	0.40	0.51
Control Delay	15.1	24.0	15.4	26.6	24.5	28.2	22.0	38.9	10.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	15.1	24.0	15.4	26.6	24.5	28.2	22.0	38.9	10.9
Queue Length 50th (ft)	44	196	24	143	65	71	22	45	0
Queue Length 95th (ft)	89	292	55	222	127	148	53	96	57
Internal Link Dist (ft)		712		564		550		1548	
Turn Bay Length (ft)	170		170		100		275		190
Base Capacity (vph)	428	1596	281	1383	414	643	313	563	609
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.41	0.57	0.36	0.48	0.43	0.32	0.20	0.17	0.31

Intersection Summary

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	中 ${ }^{\text {a }}$		${ }^{7}$	䖝		${ }^{7}$	$\hat{\dagger}$		${ }^{7}$	4	「
Traffic Volume（veh／h）	161	654	183	92	549	60	164	93	95	59	88	172
Future Volume（veh／h）	161	654	183	92	549	60	164	93	95	59	88	172
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate，veh／h	175	711	199	100	597	65	178	101	103	64	96	187
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh，\％	2	2	2	2	2	2	2	2	2	2	2	2
Cap，veh／h	382	928	260	275	988	107	413	180	184	316	288	244
Arrive On Green	0.09	0.34	0.34	0.06	0.31	0.31	0.11	0.21	0.21	0.05	0.15	0.15
Sat Flow，veh／h	1781	2742	767	1781	3233	351	1781	849	866	1781	1870	1585
Grp Volume（v），veh／h	175	461	449	100	328	334	178	0	204	64	96	187
Grp Sat Flow（s），veh／h／ln	1781	1777	1732	1781	1777	1807	1781	0	1715	1781	1870	1585
Q Serve（g＿s），s	4.6	16.4	16.4	2.7	11.1	11.2	5.8	0.0	7.6	2.1	3.2	8.0
Cycle Q Clear（g＿c），s	4.6	16.4	16.4	2.7	11.1	11.2	5.8	0.0	7.6	2.1	3.2	8.0
Prop In Lane	1.00		0.44	1.00		0.19	1.00		0.50	1.00		1.00
Lane Grp Cap（c），veh／h	382	601	586	275	543	552	413	0	364	316	288	244
V／C Ratio（X）	0.46	0.77	0.77	0.36	0.60	0.61	0.43	0.00	0.56	0.20	0.33	0.77
Avail Cap（c＿a），veh／h	517	876	854	343	751	764	496	0	652	402	606	514
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	15.3	21.0	21.0	16.8	21.0	21.0	21.4	0.0	25.0	23.4	26.8	28.8
Incr Delay（d2），s／veh	0.9	2.5	2.5	0.8	1.1	1.1	0.7	0.0	1.4	0.3	0.7	5.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（95\％），veh／ln	3.3	11.0	10.8	1.9	8.0	8.1	4.3	0.0	5.5	1.6	2.6	5.9
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	16.2	23.4	23.5	17.6	22.1	22.1	22.1	0.0	26.4	23.7	27.4	33.7
LnGrp LOS	B	C	C	B	C	C	C	A	C	C	C	C
Approach Vol，veh／h		1085			762			382			347	
Approach Delay，s／veh		22.3			21.5			24.4			30.1	
Approach LOS		C			C			C			C	

	1	2	3	4	5	6	7	8
Timer－Assigned Phs	9.6	21.1	10.3	30.0	13.7	16.9	12.6	27.7
Phs Duration（G＋Y＋Rc），s	9.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Change Period（Y＋Rc），s	6.0	27.0	7.0	35.0	11.0	23.0	12.0	30.0
Max Green Setting（Gmax），s	7.0							
Max Q Clear Time（g＿c＋I1），s	4.1	9.6	4.7	18.4	7.8	10.0	6.6	13.2
Green Ext Time（p＿c），s	0.0	1.1	0.0	5.6	0.1	0.9	0.2	3.8

Intersection Summary

HCM 6th Ctrl Delay 23.4

HCM 6th LOS

Intersection							

Major/Minor	Minor1		Major1	Major2	
Conflicting Flow All	-	1164	0	-	-
\quad Stage 1	-	-	-	-	-
\quad Stage 2	-	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, s	279	0	0
HCM LOS	F		

Minor Lane/Major Mvmt	NBTWBLn1	SBT		
Capacity (veh/h)	188	-		
HCM Lane V/C Ratio	- 1.457	-		
HCM Control Delay (s)	279	-		
HCM Lane LOS	F	-		
HCM 95th \%tile Q(veh)	16.8	-		
Notes				
\sim : Volume exceeds capacity	\$: Delay exceeds 300s		+: Computation Not Defined	*: All major volume in platoon

Intersection							
Int Delay, s/veh 2	2.2						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		\uparrow	个		*		
Traffic Vol, veh/h	4	49	252	24	74	0	
Future Vol, veh/h	4	49	252	24	74	0	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control F	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, \#	\#	0	0	-	0	-	
Grade, \%	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mvmt Flow	4	53	274	26	80	0	

Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	300	0	,	0	348	287
Stage 1	-	-	- -	-	287	-
Stage 2	-	-	- -	-	61	-
Critical Hdwy	4.12	-	- -	-	6.42	6.22
Critical Hdwy Stg 1	-	-	- -	-	5.42	-
Critical Hdwy Stg 2	-	-	- -	-	5.42	-
Follow-up Hdwy	2.218	-	- -	-	3.518	3.318
Pot Cap-1 Maneuver	1261	-	- -	-	649	752
Stage 1	-	-	- -	-	762	-
Stage 2	-	-	- -	-	962	-
Platoon blocked, \%		-	- -	-		
Mov Cap-1 Maneuver	1261	-	- -	-	647	752
Mov Cap-2 Maneuver	-	-	- -	-	647	-
Stage 1	-	-	- -	-	760	-
Stage 2	-	-	- -	-	962	-
Approach	EB		WB		SB	
HCM Control Delay, s	S 0.6		0		11.4	
HCM LOS					B	
Minor Lane/Major Mvmt		EBL	EBT	WBT WBR SBLn1		
Capacity (veh/h)		1261	,	-	-	647
HCM Lane V/C Ratio		0.003	-	-	-	0.124
HCM Control Delay (s)		7.9	0	-	-	11.4
HCM Lane LOS		A	A	-	-	B
HCM 95th \%tile Q(veh)		0	0	-	-	0.4

5: Johnson Drive \& Broadmoor Street

	4	\rightarrow	7		4	\dagger		\dagger	\checkmark
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	175	910	100	662	178	204	64	96	187
v/c Ratio	0.46	0.69	0.36	0.63	0.45	0.50	0.21	0.40	0.51
Control Delay	15.1	24.0	15.4	26.6	24.5	28.2	22.0	38.9	10.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	15.1	24.0	15.4	26.6	24.5	28.2	22.0	38.9	10.9
Queue Length 50th (ft)	44	196	24	143	65	71	22	45	0
Queue Length 95th (ft)	89	292	55	222	127	148	53	96	57
Internal Link Dist (ft)		712		564		550		1548	
Turn Bay Length (ft)	170		170		100		275		190
Base Capacity (vph)	428	1596	281	1383	414	643	313	563	609
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.41	0.57	0.36	0.48	0.43	0.32	0.20	0.17	0.31

Intersection Summary

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	中 ${ }^{\text {a }}$		${ }^{7}$	䖝		${ }^{7}$	$\hat{\dagger}$		${ }^{7}$	4	「
Traffic Volume（veh／h）	161	654	183	92	549	60	164	93	95	59	88	172
Future Volume（veh／h）	161	654	183	92	549	60	164	93	95	59	88	172
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate，veh／h	175	711	199	100	597	65	178	101	103	64	96	187
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh，\％	2	2	2	2	2	2	2	2	2	2	2	2
Cap，veh／h	382	928	260	275	988	107	413	180	184	316	288	244
Arrive On Green	0.09	0.34	0.34	0.06	0.31	0.31	0.11	0.21	0.21	0.05	0.15	0.15
Sat Flow，veh／h	1781	2742	767	1781	3233	351	1781	849	866	1781	1870	1585
Grp Volume（v），veh／h	175	461	449	100	328	334	178	0	204	64	96	187
Grp Sat Flow（s），veh／h／ln	1781	1777	1732	1781	1777	1807	1781	0	1715	1781	1870	1585
Q Serve（g＿s），s	4.6	16.4	16.4	2.7	11.1	11.2	5.8	0.0	7.6	2.1	3.2	8.0
Cycle Q Clear（g＿c），s	4.6	16.4	16.4	2.7	11.1	11.2	5.8	0.0	7.6	2.1	3.2	8.0
Prop In Lane	1.00		0.44	1.00		0.19	1.00		0.50	1.00		1.00
Lane Grp Cap（c），veh／h	382	601	586	275	543	552	413	0	364	316	288	244
V／C Ratio（X）	0.46	0.77	0.77	0.36	0.60	0.61	0.43	0.00	0.56	0.20	0.33	0.77
Avail Cap（c＿a），veh／h	517	876	854	343	751	764	496	0	652	402	606	514
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	15.3	21.0	21.0	16.8	21.0	21.0	21.4	0.0	25.0	23.4	26.8	28.8
Incr Delay（d2），s／veh	0.9	2.5	2.5	0.8	1.1	1.1	0.7	0.0	1.4	0.3	0.7	5.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（95\％），veh／ln	3.3	11.0	10.8	1.9	8.0	8.1	4.3	0.0	5.5	1.6	2.6	5.9
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	16.2	23.4	23.5	17.6	22.1	22.1	22.1	0.0	26.4	23.7	27.4	33.7
LnGrp LOS	B	C	C	B	C	C	C	A	C	C	C	C
Approach Vol，veh／h		1085			762			382			347	
Approach Delay，s／veh		22.3			21.5			24.4			30.1	
Approach LOS		C			C			C			C	

	1	2	3	4	5	6	7	8
Timer－Assigned Phs	9.6	21.1	10.3	30.0	13.7	16.9	12.6	27.7
Phs Duration（G＋Y＋Rc），s	9.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Change Period（Y＋Rc），s	6.0	27.0	7.0	35.0	11.0	23.0	12.0	30.0
Max Green Setting（Gmax），s	7.0							
Max Q Clear Time（g＿c＋I1），s	4.1	9.6	4.7	18.4	7.8	10.0	6.6	13.2
Green Ext Time（p＿c），s	0.0	1.1	0.0	5.6	0.1	0.9	0.2	3.8

Intersection Summary

HCM 6th Ctrl Delay 23.4

HCM 6th LOS

Major/Minor \quad N	Major1		Major2		Minor1	
Conflicting Flow All	0	0	222	0	420	202
Stage 1	-	-	-	-	202	-
Stage 2	-	-	.	-	218	-
Critical Hdwy		-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-		1347		590	839
Stage 1	-	-	-	-	832	-
Stage 2	-	-	-	-	818	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1347	-	586	839
Mov Cap-2 Maneuver	-	-	-	-	586	-
Stage 1	-		-	-	832	-
Stage 2	-	-	-		812	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.3		10.6	
HCM LOS					B	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		659	-	-	1347	-
HCM Lane V/C Ratio		0.031	-		0.006	-
HCM Control Delay (s)		10.6	-		7.7	O
HCM Lane LOS		B	-	-	A	A
HCM 95th \%tile Q(veh)		0.1	-	-	0	-

Intersection						
Int Delay, s/veh	1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			-	F	
Traffic Vol, veh/h	4	22	18	189	167	7
Future Vol, veh/h	4	22	18	189	167	7
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	4	24	20	205	182	8

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		4			个
Traffic Vol, veh/h	1	1	31	0	0	61
Future Vol, veh/h	1	1	31	0	0	61
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1	1	34	0	0	66

Appendix G: Signal Warrant Analysis

$56^{\text {th }}$ Street \& Metcalf Avenue Signal Warrant Analysis

Direction $=$	
Approach Minor Volume	Turn Volume
105	
103	
112	
97	

Figure 4C-2. Warrant 2, Four-Hour Vehicular Volume (70\% Factor)
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

The plotted points from all four hours of count data collected exceed 1000 VPH on the major street and exceed the 60 VPH threshold for the minor street (southbound left-turn). The volumes satisfy the FourHour vehicular Volume Warrant (Warrant \#2).

[^7]
ENGINEERING SUCCESS

FINAL DEVELOPMENT PLAN DRAINAGE REPORT FOR

11827 W. 112th St., Ste. 200 Overland Park, KS 66210 913.317.9390

56 ${ }^{\text {th }}$ and Foxridge Multifamily Mission, Kansas
PROJECT NUMBER: 2102010201
DATE:
January 2023

Table of Contents

General Information 1
Purpose 1
Location1
Development 1
Datum1
Soils 1
Flood Insurance Rate Map (FIRM) 1
Drainage Patterns 1
Hydrologic Methods 1
Table 1. Rainfall Depths (inches) for 24-Hour Design Storm 1
Drainage Conditions 2
Existing Conditions 2
Table 2. Existing Drainage Conditions 2
Proposed Conditions 2
Table 3. Proposed Drainage Conditions 3
Table 4. Underground Detention Facility. 3
Table 5. Site Flow Rate Comparison to Northwest 3
Table 6. Site Flow Rate Comparison to Southeast. 3
Table 7. Site Flow Rate Comparison for Overall Site 3
Utilities 4
Water 4
Sanitary Sewer 4
Stormwater Sewer 4
Water Quality 4
Permitting 4
U.S. Army Corps of Engineers 4
Federal Emergency Management Agency (FEMA) 4
Kansas Department of Health and Environment (KDHE) 4
Kansas Department of Wildlife, Parks, and Tourism (KDWPT) 4
Kansas Historical Society (KSHS) 4
Kansas Division of Water Resources (DWR) 4
Water Structure, Channel Changes, and Floodplain Fill
Water Appropriations 5
Summary 5
Appendix A - USGS Quadrangle 6
Appendix B - Aerial Photograph 7
Appendix C-Site Plan 8
Appendix D-Soil Survey
Appendix E-FEMA FIRM 10
Appendix F - Hydraflow Hydrograph Outputs 11
Appendix G-Existing Drainage Areas 12
Appendix H - Proposed Drainage Areas 13
Appendix I - ADS Underground Detention Details 14
Appendix J - MARC BMP LOS Worksheets 15

General Information

Purpose

The purpose of this report is to evaluate drainage conditions for a proposed multifamily development in Mission, KS. This report reviews existing drainage conditions and evaluates proposed drainage conditions as a result of the proposed improvements to the site and its conformance with the City requirements for managing stormwater runoff. This Final Drainage Report is included with the Final Development Plan submittal. An updated Final Drainage Report will be provided with the construction documents submitted for building permit.

Location

The proposed development is 4.97 acres and located at the southeast corner of $56^{\text {th }}$ and Foxridge Drive in the City of Mission, Johnson County, Kansas. The property is in Section 8, Township 12 South, Range 25 East and is shown on the USGS Quadrangle, Appendix A and Aerial Photograph, Appendix B.

Development

The site is on an existing urban lot that is developed with an existing general office building. The existing site contains 3.4 acres of existing impervious area associated with the existing parking lot, sidewalk, and building. The proposed development includes multifamily complex with associated amenities. The site plan is included as Appendix C.

Datum

The site is shown in NAVD 88.

Soils

The drainage areas on site are comprised of the following soil types according to the Natural Resources Conservation Service (NRCS) Soil Survey, Appendix D:

- Sharpsburg-Urban land complex, 4 to 8 percent slopes, HSG "C"

The Hydraulic Soil Group (HSG) for selection of runoff curve numbers (CN) is HSG "C".

Flood Insurance Rate Map (FIRM)

The site is shown on FEMA FIRM Panels 20091C0023G, effective August 3, 2009, Appendix E. This site is in Zone X (unshaded), areas determined to be outside the 1% annual chance floodplain.

Drainage Patterns

Hydrologic Methods

The existing and proposed drainage areas were modeled using Hydraflow Hydrographs by AutoCAD, Appendix F. The SCS Method was used in calculations with rainfall depths determined from the NOAA Atlas 14 Johnson County, as shown in Table 1. Time of Concentration was calculated using the TR-55 Method in Hydroflow Hydragraphs, Appendix F.
Table 1. Rainfall Depths (inches) for 24- Hour Design Storm

	$\mathbf{1 - Y r}$	$\mathbf{2 - Y r}$	$\mathbf{5 - Y r}$	$\mathbf{1 0}-\mathbf{Y r}$	$\mathbf{2 5 - Y r}$	$\mathbf{5 0}-\mathbf{Y r}$	$\mathbf{1 0 0} \mathbf{- Y r}$
Johnson County	3.1	3.6	4.6	5.3	6.2	7.0	8.5

Drainage Conditions

Existing Conditions

Under existing conditions, the site drains in two directions. Existing Site- NW is approximately 3.75 acres and drains from south to the northwest where it eventually drains to the roadside ditch located east of Metcalf Avenue, northwest of the site area. Existing Site- SE is approximately 1.24 acres and drains from west to east as it sheet flows to Broadmoor Street. Flows from Broadmoor Street drain to the south. The existing drainage conditions can be seen in Table 2. Appendix G provides the Existing Watershed Areas.
Table 2. Existing Drainage Conditions

	Area (acres)	Tc (min)	CN	$\mathbf{2 - Y r}$ (cfs)	$\mathbf{5 - Y r}$ (cfs)	$\mathbf{1 0 - Y r}$ (cfs)	$\mathbf{2 5 - Y r}$ (cfs)	$\mathbf{5 0}-\mathbf{Y r}$ (cfs)	$\mathbf{1 0 0 - Y r}$ (cfs)
Existing Site- NW	3.75	5.0	90	15.5	20.7	24.6	29.7	33.5	37.3
Existing Site- SE	1.24	5.0	90	5.1	6.8	8.1	9.8	11.1	12.4

Proposed Conditions

Under proposed conditions, the site will continue to drain in two directions. Drainage patterns have shifted due to the proposed site plans and to reduce the peak flow in each direction. The overall on-site watershed draining northwest is approximately 4.70 acres, while the overall on-site watershed draining southeast is 0.29 acres. The proposed site improvements will increase impervious area on the site by 0.53 acres and the proposed site curve numbers have increased to reflect the site improvements. The northwest half of the site is divided into two separate watersheds, area that is draining to an underground detention facility (Detained), and area that surface drains northwest and is not collected in the underground stormwater detention facility (Undetained). The proposed watersheds are described in more detail below, and Table 3 describes proposed drainage area conditions. Appendix H provides the Proposed Watershed Areas.
Proposed Site- NW Detained is approximately 3.64 acres, and primarily drains the roof and proposed building area. This drainage will be routed from building roof drains to an ADS underground detention chamber facility, located beneath the parking lot west of the building. Roof drain design and connections are approximate, and shown in the Final Development Plans. The underground stormwater detention facility will be constructed with the proposed improvements on site due to the increase in impervious area and will provide storage volume to reduce peak flows from the site. See Appendix I for the proposed detention facility location and design documents provided by Advanced Drainage Systems (ADS). Detention basin and allowable release rates are designed in conformance with the KC Metro APWA 5600 Storm Drainage Systems \& Facilities, 2011. Details for the ADS detention facility are shown in Table 4.
Proposed Site- NW Undetained is approximately 1.06 acres. The watershed is primarily areas north and west of the building, between the building and street right of way. Stormwater will surface drain to $56{ }^{\text {th }}$ Street and Foxridge Drive. Storm water within the watershed will ultimately drain northwest. The stormwater will bypass the underground detention facility and will drain to the street and ultimately be collected and piped northwest to an existing channel east of Metcalf Ave., located within public right of way.
Proposed Site- SE is approximately 0.29 acres. The watershed is primarily areas south and east of the building, between the building and the property line. Storm water will surface drain to the southeast and ultimately collect in Broadmoor St. matching existing drainage patterns. The watershed area surface draining southeast will be significantly reduced compared to existing conditions, from 1.24 acres to 0.29 acres, respectively, due to the proposed site plans.
Tables 5 and 6 provide the peak flow comparison between existing and proposed conditions for overall stormwater draining northwest and southeast, respectively. The proposed flowrates area decreased in proposed conditions for all storm events in each watershed.

Table 7 provides the site flow comparison for the entire site. The flow rate is the combination of the total flow northwest and southeast compared in existing and proposed conditions. The values shown in Table 7 are not a straight mathematical addition due to the time of concentrations of each watershed, and when the peak flow rates combine. Total peak flow from the site is reduced in all storm events.

Table 3. Proposed Drainage Conditions

	Area (acres)	$\mathbf{T c}$ $\mathbf{(m i n)}$	$\mathbf{C N}$	$\mathbf{2 - Y r}$ (cfs)	$\mathbf{5}-\mathbf{Y r}$ (cfs)	$\mathbf{1 0 - \mathbf { Y r }}$ (cfs)	$\mathbf{2 5 - \mathbf { Y r }}$ (cfs)	$\mathbf{5 0}-\mathbf{Y r}$ (cfs)	$\mathbf{1 0 0 - \mathbf { Y r }}$ (cfs)
Prop. Site- NW Detained	3.64	5.0	93	16.3	21.3	25.0	29.9	33.5	37.2
Prop. Site- NW Undetained	1.06	5.0	93	4.7	6.2	8	9.5	10.7	11.9
Prop. Site- SE	0.29	5.0	93	1.3	1.7	2.0	2.4	2.7	3.0

Table 4. Underground Detention Facility.

	2-Yr (cfs)	5-Yr (cfs)	10-Yr (cfs)	$\mathbf{2 5 - Y r}$ (cfs)	$\mathbf{5 0} \mathbf{- Y r}$ (cfs)	$\mathbf{1 0 0 - Y r}$ (cfs)
Flow In (cfs)	16.3	21.3	25.0	29.9	33.5	37.2
Flow Out (cfs)	5.9	9.0	13.9	20.3	24.7	28.3
Storage Volume (cu-ft)	9,600	12,900	14,500	16,200	17,300	18,400
Outlet Structure	12 " outlet pipe @ 1043.25', 24" outlet pipe @ 1046.50'					

Table 5. Site Flow Rate Comparison to Northwest

	2-Yr (cfs)	5-Yr (cfs)	10-Yr (cfs)	$\mathbf{2 5 - Y r}$ (cfs)	$\mathbf{5 0 - Y r}$ (cfs)	$\mathbf{1 0 0 - Y r}$ (cfs)
Existing Site- NW	15.5	20.7	24.6	29.7	33.5	37.3
Prop. Site- NW (Combined Flow: Flow out of Detention \& Prop. Site-NW Undetained)	9.9	12.6	18.7	26.8	32.0	37.1
Decrease	36%	39%	24%	10%	4%	1%

Table 6. Site Flow Rate Comparison to Southeast

	2-Yr (cfs)	5-Yr (cfs)	$\mathbf{1 0 - Y r}$ (cfs)	$\mathbf{2 5 - Y r}$ (cfs)	$\mathbf{5 0}-\mathbf{Y r}$ (cfs)	$\mathbf{1 0 0} \mathbf{- Y r}$ (cfs)
Existing Site- SE	5.1	6.8	8.1	9.8	11.1	12.4
Prop. Site- SE	1.3	1.7	2.0	2.4	2.7	3.0
Decrease	75%	75%	75%	76%	76%	76%

Table 7. Site Flow Rate Comparison for Overall Site

	2-Yr (cfs)	5-Yr (cfs)	10-Yr (cfs)	$\mathbf{2 5 - Y r}$ (cfs)	$\mathbf{5 0}-\mathbf{Y r}$ (cfs)	$\mathbf{1 0 0 - Y r}$ (cfs)
Existing Site	20.6	27.5	32.7	39.5	44.6	49.7
Proposed Site	11.1	13.9	20.1	28.6	34.4	39.9
Decrease	46%	49%	39%	28%	23%	20%

Utilities

Water

A proposed water line will extend to service the proposed building.

Sanitary Sewer

A sanitary sewer line will be extended to service the proposed building.

Stormwater Sewer

Proposed stormwater sewer lines will convey runoff from the proposed site improvements. The proposed parking lot system will convey stormwater runoff from the lot to the existing drainage channel.

The storm sewer system will be designed using APWA 5600 design criteria. These systems will be sized for a minimum of a 10-year design storm with escape routes for larger storm events.

Water Quality

For the increase in impervious surfaces on-site, an ADS underground isolator row chamber will be utilized for Water Quality calculations. The isolator row will treat a majority of the storm runoff that drains to the Northwest corner of the site. The isolator row has a VR=9.0. The sizing for the ADS isolator are provided in Appendix I. Updated final sizing for the isolator row with be provided in the final drainage report included with the building permit submittal. See Appendix J for MARC BMP LOS Worksheets.

Permitting

U.S. Army Corps of Engineers

There is no blue line stream located on the site, therefore permitting through the U.S. Army Corps of Engineers will not be required.

Federal Emergency Management Agency (FEMA)

There are no FEMA floodplains on the site; therefore permitting through FEMA will not be required.

Kansas Department of Health and Environment (KDHE)

Since the site disturbs more than 1.0 acre, a Notice of Intent (NOI) and Storm Water Pollution Prevention Plan (SWPPP) will be required.

Kansas Department of Wildlife, Parks, and Tourism (KDWPT)

The KDWPT will be contacted during the KDHE NOI permitting process. It is not anticipated there will be any concerns.

Kansas Historical Society (KSHS)

The KHS will be contacted during the KDHE NOI permitting process. Since there are no historical buildings on site, it is not anticipated there will be any concerns.

Kansas Division of Water Resources (DWR)

Water Structure, Channel Changes, and Floodplain Fill
Since all the drainage areas draining through the site are under 640 acres, water structures, channel change, and floodplain fill permits are not required.

Water Appropriations

There will not be a facility with a permanent pool of greater than 15 acre-feet; therefore, a water appropriations permit will not be needed.

Summary

The $56^{\text {th }}$ \& Foxridge multifamily development is located in Mission, Kansas. The site is on an existing developed urban lot that will be redeveloped to a multifamily complex with associated amenities. The site improvements will replace the existing building and parking lot currently on the site and will increase impervious area on the site.
Peak flow rates are decreased to the northwest and southeast. Peak flow rates to the southeast have decreased due to shift in drainage patterns and will improve downstream conditions due to the reduced peak flows from the site. Peak flow rates to the northwest have decreased due to a proposed underground storm water detention facility included with the proposed improvements.

An ADS underground isolator row will be installed for water quality treatment. Water quality requirements meet the BMP MARC Manual.

Appendix A - USGS Quadrangle

Appendix B - Aerial Photograph

W 55th St

W 56th Terr

Metcalf Lin

Metcalf Ave

W 58th St

W 56th St

Project Location

W 57th St
$\ddot{\infty}$
\％
Source：Esri，Maxar，GeoEye，Earthstar Geographics，CNESNA⿳亠二口欠心，DS， USDA，USGS，AeroGRID，IGN，and the GIS User Community 0

SEC： 08 TWP：T12S RNG：R25		MKEC Overland Park，KS•913．317．9390	AERIAL EXHIBITFOXRIDGEMISSION，JOHNSON COUNTY，KANSAS			
$\xrightarrow{25}$			Provect No． 2102	2010852 Date F	biruary 2022	Heet
			Dramwer：LES	desineobr：Les	appoveebr：KLA	1 OF 1

Appendix C-Site Plan

NSPJ site plan render

Appendix D-Soil Survey

W58th St
W58th S\}

$$
\mathscr{C}
$$

	© 2022 MKEC Engineering All Rights Reserved www.mkec.com These drawings and their contents, including, but not limited to, all concepts, designs, \& ideas are the exclusive property of MKEC Engineering (MKEC), and may not be used or reproduced in any way without the express consent of MKEC.

Appendix E-FEMA FIRM

Appendix F - Hydraflow Hydrograph Outputs

Watershed Model Schematic

Legend

Hyd. Oriain

1	SCS Runoff	EX SITE - NW
2	SCS Runoff	EX SITE - SE
3	Combine	Exist Site- Combined
5	SCS Runoff	PROP SITE - NW - Detained
6	SCS Runoff	PROP SITE - NW - Undetained
7	SCS Runoff	PROP SITE - SE
8	Reservoir	UG Detention Pond
9	Combine	TOTAL PROP - NW(Combined Det. Facility + Undetain)
10	Combine	Prop Site-Combined

Hydrograph Return Period Recap

Hydratlow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hydrograph Summary Report

Hyd. No. 1

EX SITE - NW

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=37.34 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=11.93 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=82,833 \mathrm{cuft}$
Drainage area	$=3.750 \mathrm{ac}$	Curve number	$=90^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=7.68 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^8]

Hyd. No. 2

EX SITE - SE

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=12.35 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=11.93 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=27,390 \mathrm{cuft}$
Drainage area	$=1.240 \mathrm{ac}$	Curve number	$=90^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=\mathrm{User}$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=7.68 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^9]
Hyd. No. 3

Exist Site- Combined

Hydrograph type	$=$ Combine	Peak discharge	$=49.69 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=11.93 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=110,223 \mathrm{cuft}$
Inflow hyds.	$=1,2$	Contrib. drain. area	$=4.990 \mathrm{ac}$

Hyd. No. 5

PROP SITE - NW - Detained

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=37.19 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=11.93 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=84,794 \mathrm{cuft}$
Drainage area	$=3.640 \mathrm{ac}$	Curve number	$=93$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=\mathrm{User}$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=7.68 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 6

PROP SITE - NW - Undetained

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=10.83 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=11.93 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=24,693 \mathrm{cuft}$
Drainage area	$=1.060 \mathrm{ac}$	Curve number	$=93$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=7.68$ in	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

PROP SITE - NW - Undetained
Hyd. No. 6 -- 100 Year

Hyd. No. 7

PROP SITE - SE

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=2.963 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=11.93 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=6,756 \mathrm{cuft}$
Drainage area	$=0.290$ ac	Curve number	$=93^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=7.68 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

[^10]

Hyd. No. 8

UG Detention Pond

Hydrograph type	$=$ Reservoir	Peak discharge	$=28.33 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=12.00 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=84,766 \mathrm{cuft}$
Inflow hyd. No.	$=5-$ PROP SITE - NW - Detaineldlax. Elevation	$=1044.19 \mathrm{ft}$	
Reservoir name	$=$ ADS Underground (UG) DetenNitaxFGadiliage	$=18,387 \mathrm{cuft}$	

Storage Indication method used.

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Pond No. 1-ADS Underground (UG) Detention Facility

Pond Data
Pond storage is based on user-defined values.
Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	1038.25	n/a		
0.08	1038.33	n/a	0	0
0.16	1038.41	n/a	156	156
0.75	1039.00	n/a	156	312
0.83	1039.08	n/a	1,093	1,405
0.91	1039.16	n/a	330	1,735
1.00	1039.25	n/a	330	2,065
2.00	1040.25	n/a	329	2,394
3.00	1041.25	n/a	3,886	6,280
4.00	1042.25	n/a	3,719	9,999
5.00	1043.25	n/a	3,445	13,444
6.00	1044.25	n/a	2,997	16,441
6.50	1044.75	n/a	2,122	18,563
6.75	1045.00		937	19,500
		468	19,968	

Culvert / Orifice Structures

| | | [A] | [B] | [C] | [PrfRsr] | | [A] | [B] | [C] |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | [D]

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).
Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	$\begin{aligned} & \text { Wr D } \\ & \text { cfs } \end{aligned}$	Exfil cfs	User cfs	Tota cfs
0.00	0	1038.25	0.00	---	0.00	---	---	---	---	---	---	---	0.000
0.08	156	1038.33	0.03 ic	---	0.00	---	---	---	---	---	---	---	0.029
0.16	312	1038.41	0.11 ic	---	0.00	---	---	---	---	---	---	---	0.111
0.75	1,405	1039.00	1.86 ic	---	0.00	---	---	---	---	---	---	---	1.864
0.83	1,735	1039.08	2.16 ic	---	0.00	---	---	---	---	---	---	---	2.162
0.91	2,065	1039.16	2.44 ic	---	0.00	---	---	---	---	---	---	---	2.438
1.00	2,394	1039.25	2.67 ic	---	0.00	---	---	---	---	---	---	---	2.674
2.00	6,280	1040.25	4.63 ic	---	0.00	---	---	---	---	---	---	---	4.631
3.00	9,999	1041.25	5.98 ic	---	0.00	---	---	---	---	---	---	---	5.979
4.00	13,444	1042.25	7.07 ic	---	3.18 ic	---	---	---	---	---	---	---	10.25
5.00	16,441	1043.25	8.02 ic	---	13.13 ic	---	---	---	---	---	---	---	21.15
6.00	18,563	1044.25	8.87 ic	---	20.01 ic	---	---	---	---	---	---	---	28.88
6.50	19,500	1044.75	9.26 ic	---	22.69 ic	---	---	---	---	---	---	---	31.95
6.75	19,968	1045.00	9.45 ic	---	23.91 ic	---	---	---	---	---	---	---	33.37

Hyd. No. 9

TOTAL PROP - NW(Combined Det. Facility + Undetain)

Hydrograph type	$=$ Combine	Peak discharge	$=37.09 \mathrm{cfs}$
Storm frequency	$=100$ yrs	Time to peak	$=11.97 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=109,459 \mathrm{cuft}$
Inflow hyds.	$=6,8$	Contrib. drain. area	$=1.060 \mathrm{ac}$

TOTAL PROP - NW(Combined Det. Facility + Undetain)

Hyd. No. 10

Prop Site-Combined

Hydrograph type	$=$ Combine
Storm frequency	$=100 \mathrm{yrs}$
Time interval	$=2 \mathrm{~min}$
Inflow hyds.	$=7,9$

Prop Site-Combined

Appendix G-Existing Drainage Areas

Appendix H - Proposed Drainage Areas

Appendix I - ADS Underground Detention Details

PROJECT INFORMATION	
ENGINEERED PRODUCT MANAGER	
AdS SALES REP	
PROJECT NO.	

//ADS

SiteAssist

 FOR STTRMTECHINSTALLATIN INSTRUCTIO
VISIT OUR APP

56TH FOXRIDGE MF
 MISSION, KS, USA

MC-7200 STORMTECH CHAMBER SPECIFICATIONS

1. CHAMBERS SHALL BE STORMTECH MC-7200.
2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS.
3. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED
4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD
IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION LONG-DURATION DEAD LOADS AND 2) SHORT-DURA
FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
6. CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTIEE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORAUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLLDE: 1) INSTANTANEOUS ((1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MIIIMUM COVER 2)
7. REQUIREMENTS FOR HANDLING AND INSTALLATION

- TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING - TTACKING LUGS.
- THAN 3". GREATER THAN OR EQUAL TO 450 LBS/FT/\%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE $73^{\circ} \mathrm{F} / 23^{\circ} \mathrm{C}$), CHAMBERS SHALL BE PRODUCED
FROM REFLECTIVE GOLD OR YELLOW COLORS.
ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SALLL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE
DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
- THE STRUCTURAL EVALUATION SHALL DEMMNSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.

9. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-7200 CHAMBER SYSTEM

1. STORMTECH MC-7200 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A
2. STORMTECH MC-7200 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-T200 CONSTRUCTION GUIDE".
3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR EXCAVATOR SITUATED OVER THE CHAMBERS.

STORMTECH RECOMMENDS 3 AACKFILLMETHODS:

4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS
5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONe.
6. MAINTAIN MINIMUM - 9 " (230 mm) SPACING BETWEEN THE CHAMBER ROWS.
7. INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF $12^{\prime \prime}(300 \mathrm{~mm})$ INTO CHAMBER END CAPS
8. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE MEETING THE AASHTO M43 DESIGNATION OF \#3

OR\#4.
9. STONE SHALL BE BROUGHT UP EVENLY AROUND CHAMBERS SO AS NOT TO DISTORT THE CHAMBER SHAPE. STONE DEPTHS SHOULD NEVER
10. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING
11. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIAL BEARING CAPACITIES TO THE SITE DESIGN
12. ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE 12. ADS RECOMMENDS THE USE OF "FLEXSTORM CATCHIT" INSERTS DURING COM
STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOF

NOTES FOR CONSTRUCTION EQUIPMENT

1. STORMTECH MC-7200 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-7200 CONSTRUCTION GUIDE".
2. THE USE OF EQUIPMENT OVER MC-7200 CHAMBERS IS LIMITED:

NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.

- NO RUBER TRE LOADER, DUM TRUCK OR EXCAVATORS ARE ALLOWED UNTLL PROPER FLLL DEPTHS ARE REACHED IN ACCORDANCE
WITH THE "STORMTECH MC-3500/MC-T200 CONSTRUCTION GUUDE"

3. FULL $36^{\prime \prime}(900 \mathrm{~mm}$) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE WARRANTY.
CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

ACCEPTABLE FILL MATERIALS: STORMTECH MC-7200 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / DENSITY REQUIREMENT
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.
c	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35\% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ${ }^{1}$ A-1, A-2-4, A-3 OR AASHTO M43 $3,357,4,467,5,56,57,6,67,68,7,78,8,89,9,10$	BEGIN COMPACTIONS AFTER 24 (600 mm) OF MATERIAL OVER THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN 12" (300 mm) MAX LIFTS TO A MIN. 95\% PROCTOR DENSITY FOR WELL GRADED MATERIAL AND 95\% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS.
B	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	$\begin{gathered} \text { AASHTO M431 } \\ 3,4 \end{gathered}$	NO COMPACTION REQUIRED.
A	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	$\underset{3,4}{\text { AASHTO M43' }}$	PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE ${ }^{2,3}$

please note:

1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR \#4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE",
2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9 " (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR

3. ONCE LAYER 'C' IS PLACED, AN

MC-7200 ISOLATOR ROW PLUS DETAIL

INSPECTION \& MAINTENANCE

STEP 1) INSPECT ISOLATOR ROW PLUS FOR SEDIMENT
A. INSPECTION PORTS (IF PRESENT)

REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
A.2. REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED
A.3. USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG
A.4. LOWER A CAMER INTO ISOLATOR ROW PUS FOR VISUC
A.5. IF SEDIMENT ISAT, OR ABOVE, $3^{\prime \prime}(80 \mathrm{~mm})$ PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3 .
A.
B. ALL ISOLATOR PLUS ROWS
B.2. USINGE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS

USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE
i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
iil $)$ FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
B.3. IF SEDIMENT IS AT, OR ABOVE, 3 (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF $45 "(1.1 \mathrm{~m}$) OR MORE IS PREFERRE
A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SRREAD OF 45" (1.
B. APPLY MUTTPLE PASSES OF JETVAC UNTL BACKFLUSH WATER IS CLEAN
B. APPLY MULTIPLE PASSES OF JETVAC UNTLL

STEP 3) REPLACE ALL COVERS, GRATES, FLLTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS
STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.

NOTES

1. INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.

SHEET

Appendix J - MARC BMP LOS Worksheets

WORKSHEET 1A: REQUIRED LEVEL OF SERVICE - DEVELOPED SITE

Project:	By:	Date:
Location:	Checked:	Date:

1. Required Treatment Area

A. Total Area Disturbed by Redevelopment Activity (ac.

Disturbed Area Description Acres

Demolish Existing building, and construct new site	4.99
	"1A" Total:

B. Existing Impervious Area Inside Disturbed Area (ac.)

Existing Impervious Area Description Acres

C Required Treatment Area (ac.)

$$
\text { "1A" Total Less "1B" Total } \quad \text { "1C" } 3.4
$$

2. Percent Impervious in Post development Condition and Level of Service (LS)
A. Total Postdevelopment Impervious Area Inside Disturbed Area (ac.)

Postdevelopment Impervious Area Descriplion
Building, parking, sidewalk, etc. Acres 4.1 " $2 \mathrm{~A}^{\prime}$ Total:

B. Existing Impervious Area Inside Disturbed Area (ac.)
"1B" Total: $[3.4$
C. Net Increase in Impervious Area (ac.)
"2A" Total Less "1B" Total "2C" 0.7
D. Percent Impervious

Net Increase in Impervious Area / Required Treatment Area " $2 \mathrm{C} / \mathrm{f} / 1 \mathrm{C}$ " x 100
E. Level of Service

Use Percent Impervious to Enter Table XX
$\mathrm{Ls}=4.7$
3. Minimum Required Total Value Rating of BMP Package

Total Value Rating $=$ LS \times Required Treatment Area
VR $=15.98$

WORKSHEET 2: DEVELOP MITIGATION PACKAGE(S) THAT MEET THE REQUIRED LS

Project:
By:
Date:
Location:
Checked: Date:

Sheet of $]$

1. Required LS (New Development, Wksht 1) or Total VR (Redevelopment, Wksht 1A): 15.98

Note: Various BMPs may alter CN of proposed development, anc LS; recalculate both if applicable.
2. Proposed BMP Option Package N._

1 VR calculated for final BMP only in Treatment Train.
${ }^{2}$ Total treatment area cannot exceed 100 percent of the actual site area.

* Blank In Redevelopment

Meets required LS (Yes/No)? YES (If No, or if additioral options are being tested,

 proceed below.)3. Proposed BMP Option Package $N \$$.

VR from
Treatment Table 4.4 Product of VR
Cover/BMP Description

	Total $^{2}:$		Total:	

[^11]

AT A GLANCE

Applicant:

American Honey Hair Co.

Location:
6620 Martway Street

Property ID:
KF251208-2056

Current Zoning: C-2A

Proposed Zoning:
N/A

Current Land Use:
Retail

Proposed Land Use:
N/A

N/A Public Hearing Required
Legal Notice Date:
N/A

Case Number:
23-05

Project Name:
American Honey Mural

Project Summary:
The applicant is requesting approval of a Mural on the south facade of the American Honey Hair Salon currently in operation at 6620 Martway Street.

Background and Property Information

American Honey Hair Salon, located at 6620 Martway, is a new business in Mission and has renovated the space on the south side of the Planet Fitness and Dollar Tree building, facing Martway Street. The business would like to include a mural on the south facade of the building to add an attractive piece of art along Martway Street.

Project Proposal

A local painter, Whitney Kerr, has been contracted by American Honey Hair Salon to paint a mural that depicts a rider on horseback with a landscape scene. Colors are terracotta and neutral beiges, with white space on the left-hand side of the wall for a wall sign if the business chooses to add it at a later date.

Plan Review and Analysis

Municipal Code

Section 430.020 of the municipal code defines wall murals as "any mosaic, painting, or graphic art or combination thereof which is professionally applied to a building, and which does not convey a commercial message." Section 430.050 further provides that certain signs are excluded from the City's sign code including "integral decorative or architectural features of buildings or works of art, so long as such features or works do not contain letters, trademarks, moving parts or lights."

It is Staff's determination that the mural as proposed meets stipulations of the municipal code.

Mural Guidelines

The design standards in the Wall Mural Guidelines state the following:
-Murals shall be an original work of art.
-Murals may be two-dimensional or three-dimensional.
-Murals shall be designed and constructed under the supervision of a qualified artist/muralist or individual who has knowledge and experience in the design and execution of such projects, as well as the application of the selected medium.
-Murals must exhibit the highest quality design, content, materials, and application.
-Mural materials shall be durable and weather resistant to prevent premature deterioration, fading, or other unintended change in appearance.
-Mural materials must be appropriate for outdoor application with consideration for location, climate, weather conditions, longevity, and resistance to vandalism (including graffiti).
-Murals shall not contain a logo or trademark symbol, nor shall any mural include commercial text or products displaying, mimicking, or construed as symbolizing a specific brand. Murals shall not contain material that is protected under copyright law unless permission has been granted and evidence of such is provided to the City.
-Murals shall not incorporate recognized symbols of hatred or discrimination against any race, color, sex, age, religion, national origin, ancestry, disability, marital status, familial status, gender identity or expression, or sexual orientation.
-Murals shall not incorporate anything that would be considered inappropriate and/or indecent by contemporary community standards.

It is Staff's determination that the mural as proposed meets design standards as stipulated in the Mural Guidelines.

Further, the guidelines state that a mural shall be located on a side or rear of a building, and may be placed on the front facade if it complements the overall front facade and does not compete with architectural details. Murals should also avoid creating harsh edges where there are no present architectural features. Murals can be placed on walls to define the edge of a property, and they should be located and sized to encourage pedestrian engagement.

The diagonal line of the mural without a wall sign on the left-hand side of the building could be subjectively considered a "harsh" line, but a wall sign would compliment the facade in the white space. Additionally, the design of the mural outline may be considered a motif of the west that complements the image itself, such as the outline of a mountain/mesa.

The artist who submitted the application for the mural has completed several local projects of the same or similar scope. The artist and the business tenant have received written permission from the property owner to proceed with the project.

Recommendation

Staff recommends that the Planning Commission approve the installation of the mural with consideration to the following conditions:
(A) The property owner or designee shall sign a maintenance agreement with the City before work may begin.
(B) Current white space that is primer paint shall be painted with a durable exterior paint of the same color as determined by Staff prior to installation.
(C) Applied topcoats, superficial layers, or graffiti coats do not compromise the painting

Planning Commisison Action

The Planning Commission will consider Case \# 23-05 at its March 27, 2023 meeting.

City Council Action
None
This message came from outside City of Mission, Kansas - please use caution when opening attachments or links.*
Example of mural
CONFIDENTIALTY NOTICE-This email including any filestraseit

Maintenance plan: The mural will last up to 20 years with the premium paints $\mathrm{I} m$ using as well as a top clear coat that will protect it from the sun and elements. I plan on resealing it every $4-5$ years.
Timeline: The mural will only take $2-3$ days to paint. So as soon as it is approved and the weather cooperates it will be done in a short amount of time.
Updated application:
The only thing I'm waiting on is a signature from David Block the property owner. Should have it very soon. Hopefilly that's everything you need
Thanks,
Whitney Ker

$4 \ln _{2}$

Hex

Letter of Permission.

This is a letter from Whitney Kerr requesting permission from David Block, the owner of 6620 Martway St. Mission, KS 6620 to paint a mural on the south facing wall of the building. Attached is a rendering of what the mural will look like and where on the wall it will be painted. The mural is being commissioned by American Honey Hair Co. and is set to be installed by the end of March, 2023. Please sign below to agree to the terms above. Thanks.

I David Block give Whitney Kerr and anyone working with him permission to paint the mural which is attached above on the south facing wall of 6620 Martway St. Mission, KS 66202.

Signed,
Whitney Kerr (Painter)

David Block (Property Owner)
$\underbrace{\text { Docusigne by }}_{\text {David Block }} \quad 2 / 7 / 2023$

[^0]: *L: Left, R: Right, T: Thru, U: U-Turn

[^1]: * L: Left, R: Right, T: Thru, U: U-Turn

[^2]: * L: Left, R: Right, T: Thru, U: U-Turn

[^3]: * L: Left, R: Right, T: Thru, U: U-Turn

[^4]: *L: Left, R: Right, T: Thru, U: U-Turn

[^5]: * L: Left, R: Right, T: Thru, U: U-Turn

[^6]: * L: Left, R: Right, T: Thru, U: U-Turn

[^7]: Foxridge Mission TIS | April 2022
 Mission, Kansas

[^8]: * Composite $($ Area/CN $)=[(3.400 \times 98)+(1.590 \times 74)] / 3.750$

[^9]: * Composite $($ Area/CN $)=[(3.400 \times 98)+(1.590 \times 74)] / 1.240$

[^10]: * Composite $($ Area/CN $)=[(0.160 \times 98)+(0.130 \times 74)] / 0.290$

[^11]: 1 VR calculated for final BMP only in Treatment Train.
 2 Total treatment area cannot exceed 100 pe-cent of the actual site area.

 * Blank In Redevelopment

 Meets required LS (Yes/No)? (If No, or if additional options are be ing tested, move to next sheet.)

